

# **THERMAL PERFORMANCE CALCULATION**



**Analysis Undertaken and Report**

**Prepared by Façade Creations**

**Document Title:** U value analysis of rainscreen backing wall

**Prepared by:** xxxxxx

**Reviewed by:** xxxxxxxx

**Let's Build Something Remarkable.**  
Façade Creations | Registered in England  
T: +44 (0) 116 289 3343

# **Revisions and Essential Declarations**

## **Revision Status**

The current status of this document is Rev 01, representing the Initial issue of the thermal analysis report, dated xx xx xxxx

## **Assurance of Confidentiality and Client Focus**

This report serves as a confidential document, produced by Façade Creations specifically and solely for our esteemed client referenced on the title page: <https://www.facadecreations.co.uk/>.

- The information contained within this document is proprietary. It must not be disclosed to any external party without explicit, written permission granted by Façade Creations.
- Should disclosure be authorized, the report must be provided in its complete and original entirety.
- Façade Creations state that they shall not be liable for any reliance placed on this information by any party other than the intended Client.
- This analysis is provided strictly under the framework of Façade Creations standard terms and conditions, and it is critical to understand that this report does not constitute a guarantee or formal warranty of performance.
- In line with the Contracts (Rights of Third Parties) Act 1999, nothing within this document grants any third party a benefit or implies the acceptance of any third-party liability.

## **Defined Scope of Assessment**

It is paramount to note that this document is dedicated exclusively to providing an assessment of the thermal performance only of the system.

This analysis does not, and is not intended to, cover or contain any assessments regarding the façade's suitability for other critical aspects of building performance, including but not limited to, structural integrity and fire resistance. Comprehensive assessment of these areas remains the responsibility of the client and their nominated specialist engineers.

# Summary of Thermal Performance Analysis

This document presents the findings from a 3-dimensional thermal finite element analysis performed on the rainscreen backing wall system. This analysis was conducted to establish the critical U-value performance data required for the XXXXXX project, located in XXXXX, on behalf of <https://www.facadecreations.co.uk/>.

## System Description and Methodology

The wall construction under investigation comprises a ventilated rainscreen system supported by vertical rails and an array of helping hand brackets, all fixed back to a supporting SFS (Steel Frame System) wall.

- **Governing Standard:** By convention, and referencing BR443, the external rainscreen element itself is not included in the primary U-value calculation. However, a crucial amendment is made to the external surface resistance of the insulating material to accurately account for the sheltering effect provided by the rainscreen cladding.
- **Thermal Bridging:** Crucially, the thermal impact of penetrating brackets that pass through the insulation layer must be allowed for and rigorously accounted for in the analysis. (See analysis notes for further details.)
- **Model Dimensions:** The nominal construction, as defined on drawing XXXXX and XX, was modelled as a representative sample area of 600mm (SFS module) by 2850mm (storey height).

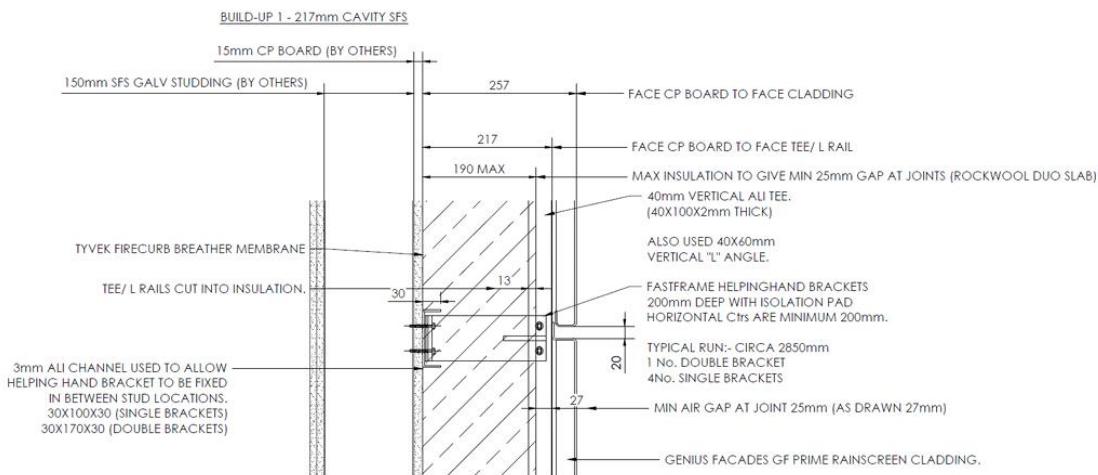
## Construction Build-Up (From Exterior to Interior)

The modelled assembly includes the following material layers and components:

1. **Insulation:** 190mm Rockwool DuoSlab mineral wool insulation ( $\lambda = 0.035 \text{ W/mK}$ ) installed within the cavity behind the rainscreen.
2. **Membrane/Sheathing:** A Tyvek Firecurb breather membrane covering a 15mm CP sheathing board, fixed to the SFS wall.
3. **SFS Structure:** 150mm uninsulated SFS framework spaced at 600mm centres.
4. **Internal Finishes:** An assumed two layers of 15mm plasterboard with a VCL (Vapour Control Layer) forming the internal finish.

## Bracket Detailing and Thermal Bridges

The thermal bridges introduced by the support system were modelled with precision:


- **Helping Hand Brackets:** Sized as 75mm long for restraint (single bracket) and 150mm long for load-bearing (double bracket). The module height includes four single and one double bracket.
- **Fixing System:** The brackets are secured to the SFS via a 3mm aluminium channel section (100mm deep at single brackets and 170mm deep at double bracket locations).
- **Isolation:** A 5mm thick isolating pad has been included between the bracket and the horizontal rail for thermal break purposes.
- **Vertical Supports:** The vertical cladding supports that penetrate the cavity insulation have been explicitly included in this finite element analysis.

## Performance Results

The detailed analysis of the examined area yields the following critical performance data:

- **Achieved U-value:** The construction achieves an overall thermal transmittance value of **0.41 W/m<sup>2</sup>K**.
- **Condensation Risk:** A comprehensive condensation risk analysis, performed in accordance with BS EN ISO 13788:2002, conclusively demonstrates that no condensation will occur within the construction assessed.

## Wall section detail (extract XXXXX)



## Wall U-Value Calculation: Detailed Analysis

The effective U-value of the rainscreen backing wall is determined by summing the heat transfer contributions from the nominal wall construction and the linear/point thermal bridging elements (rails and brackets) within the modelled section.

### Calculated Thermal Performance Breakdown

**Wall Dimensions:** 0.6 m x 2.850 m

**Horizontal Bracket Centers:** 600 mm

| Component     | Description   | U / X / $\Psi$ Value (W/m <sup>2</sup> K, W/K, or W/mK) | Area (m <sup>2</sup> ) | Length (m) | Qty | Q (W/K) |
|---------------|---------------|---------------------------------------------------------|------------------------|------------|-----|---------|
| Nominal wall  | U-value       | 0.175                                                   | 1.710                  | —          | —   | 0.299   |
| Load bracket  | X-value       | 0.115                                                   | —                      | —          | 1   | 0.115   |
| Load rail     | $\Psi$ -value | 0.003                                                   | —                      | 0.600      | 1   | 0.002   |
| Wind bracket  | X-value       | 0.071                                                   | —                      | —          | 4   | 0.284   |
| Wind rail     | $\Psi$ -value | 0.003                                                   | —                      | 0.600      | 4   | 0.007   |
| Vertical rail | $\Psi$ -value | 0.000                                                   | —                      | 3.000      | 1   | 0.000   |

### Totals:

- Area: 1.710 m<sup>2</sup>
- Total heat loss (Q): 0.707 W/K

### U-Value Summary

**Effective U-Value: 0.41 W/m<sup>2</sup>K**

### Calculation Method

The effective U-value is determined by summing the heat losses from:

- The nominal wall construction (Nominal U-value  $\times$  Area), and
- The penetrating elements such as brackets and rails (X  $\times$  Quantity and  $\Psi$   $\times$  Length).

The total heat transfer (W/K) is then divided by the wall area (m<sup>2</sup>) to yield the resulting effective U-value.

### 3D Thermal Analysis Method

The thermal performance assessment for façade systems was conducted using TRISCO ver. 15.0.01, a three-dimensional finite element analysis software developed by Physibel. This advanced tool enables steady-state thermal simulations, ensuring consistent and precise evaluation of heat transfer through complex building envelope assemblies.

TRISCO facilitates detailed modeling of three-dimensional rectangular elements composed of various materials subjected to differing boundary conditions. The model geometry is defined through a series of rectangular blocks aligned to a structured grid, with each element assigned material properties and surface boundary conditions represented by distinct color codes. Fixed temperature or heat power boundary conditions can be applied to nodal points or at interfaces between materials, ensuring accurate representation of real-world thermal behaviors.

Once the geometry and material parameters are defined, TRISCO applies an energy balance technique to establish a system of linear equations, which is solved iteratively for optimum accuracy. Any nonlinear thermal interactions are addressed through successive computational cycles using adjusted linear systems.

For enhanced precision, simulations integrate Physibel's RADCON module, which refines infrared radiation and convective heat transfer analysis. This module accounts for surface emissivity, temperature variations, and empirical convection correlations - providing a more realistic representation of energy transfer within the façade assembly.

Material thermal conductivity values ( $\lambda$ -values) used in this analysis are sourced from BS EN 12524:2000, BS EN ISO 10077-2:2003, or the Physibel material database. Where applicable, manufacturer-specific data has been referenced for materials not explicitly covered under these standards.

The software automatically determines equivalent thermal conductivities for both ventilated and unventilated air cavities, ensuring comprehensive assessment of all façade components.

All analyses are conducted under steady-state conditions, excluding the influence of thermal mass or time-dependent effects from surrounding structures or materials.

### Analysis Output

Data derived from the 3D thermal simulations provides detailed insights into the thermal behavior of each façade assembly. The analysis output includes the following components:

- **Material conductivity diagrams** illustrating assigned thermal conductivity values for each component, including software-generated equivalent cavity values where applicable.
- **Thermal gradient diagrams** displaying temperature distribution across the evaluated construction.

- **Material build-up data files** containing coordinates and configuration details of the modeled elements.
- **Thermal performance text output** summarizing the resulting temperature ranges, calculated **U-value** through the examined build-up, and **temperature factor (fRsi)** indicating the internal relative humidity level at which surface condensation may occur.

Please note that full 3D analyses have been performed for all elements using three insulation thickness options. However, to maintain file efficiency, only visual results for the **100 mm insulation option** are included within this document.

### Reference – BR 443: Rainscreen Cladding

According to guidance from BR 443 (Building Research Establishment Report), no allowance is made in U-value calculations for the rainscreen cladding itself, as the cavity behind is considered fully ventilated. However, the influence of support brackets and rails penetrating the insulation layer must be considered, as these elements significantly impact the overall U-value - even when thermal break pads are incorporated.

The calculation model should exclude the external cladding panels but must include the fixing brackets or rails in full to accurately represent their thermal bridging effect. The **external surface resistance** is taken as  $0.13 \text{ m}^2\text{K/W}$ , rather than  $0.04 \text{ m}^2\text{K/W}$ , to account for the sheltering influence of the rainscreen system.

For further technical guidance, reference should be made to the CAB/CWCT Design Guide for rainscreen cladding performance and compliance.

## “Centre” U-Value (Excluding Brackets) and Condensation Risk Analysis

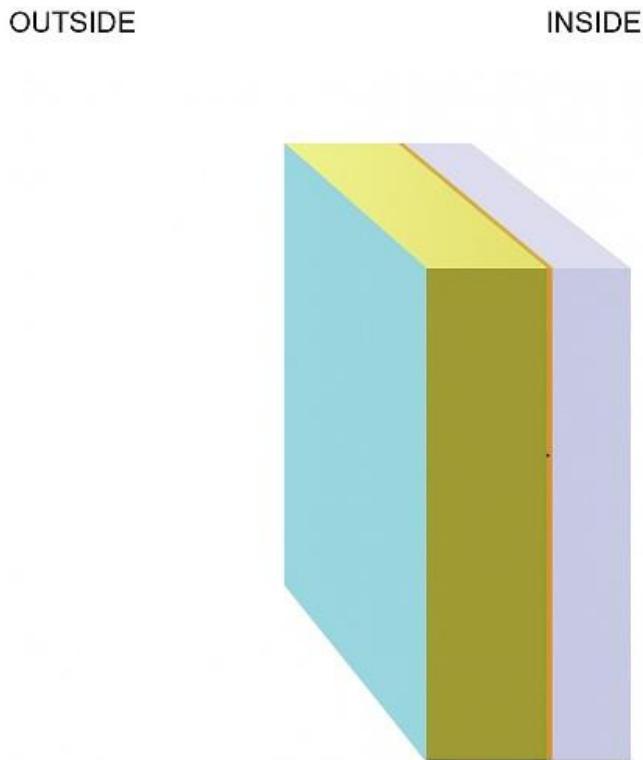
The **nominal U-value** of the façade construction, excluding the effect of support brackets, is calculated as **0.18 W/m<sup>2</sup>K**.

A **condensation risk assessment**, carried out in accordance with **BS EN ISO 13788:2012**, confirms that **no risk of interstitial condensation** is expected within the assessed construction. The analysis considers the full thermal behavior of the build-up, accounting for material properties, vapor resistances, and environmental conditions.

As the **rainscreen cladding cavity** is classified as *well-ventilated*, layers beyond this cavity have been excluded from the condensation analysis results, in line with standard practice and BRE guidance.

Temperature data used in the **BS EN ISO 13788** calculation is derived from **Met Office historical datasets**, representing mean monthly external and internal temperature profiles averaged over a **10-year period** to ensure a robust and representative evaluation of thermal performance under typical UK climate conditions.

## Component Documentation


**Thermal Transmittance (U-Value):** Calculated in accordance with *BRE Digest 465*

Source: Façade Creations Technical Catalogue – External Wall Systems

## **Component: Aluminum-Framed Rainscreen Wall Assembly**

**Software Used:** BuildDesk 3.4.6

This documentation outlines the calculation parameters and material composition used to determine the overall thermal transmittance of the specified façade wall system. The illustration of inhomogeneous layers is provided for visualization purposes only.



This illustration of inhomogeneous layer is provided only to assist in visualising the arrangement.

## Assignment: External Wall

| No. | Material / Reference Standard              | Thickness (m) | Thermal Conductivity $\lambda$ [W/mK] | Thermal Resistance R [m <sup>2</sup> K/W] |
|-----|--------------------------------------------|---------------|---------------------------------------|-------------------------------------------|
| Rse | External Surface Resistance                | —             | —                                     | 0.1300                                    |
| 1   | Aluminum Alloy (BS EN 12524)               | 0.0030        | 160.000                               | 0.0000                                    |
| 2   | Well-Ventilated Air Layer (BS EN ISO 6946) | 0.0670        | —                                     | 0.000                                     |

| No. | Material / Reference Standard                                                | Thickness (m)    | Thermal Conductivity $\lambda$ [W/mK] | Thermal Resistance R [m <sup>2</sup> K/W] |
|-----|------------------------------------------------------------------------------|------------------|---------------------------------------|-------------------------------------------|
| 3   | Façade Creations Insulation – Mineral Wool Core (based on Rockwool Duo-Slab) | 0.1900           | 0.035                                 | 5.4286                                    |
| 4   | Stainless Steel Insulation Fixings (1.5/m <sup>2</sup> )                     | —                | —                                     | —                                         |
| 5   | Tyvek® Fire-Resistant Membrane (DuPont)                                      | 0.0002           | 0.500                                 | 0.0004                                    |
| 6   | Cement-Bonded Particle Board (BS EN 12524)                                   | 0.0150           | 0.230                                 | 0.0652                                    |
| 7   | Light Steel Frame Assembly                                                   | 0.1500           | —                                     | 0.1581                                    |
| 8   | Polyethylene Vapor Barrier (BS EN 12524)                                     | 0.0002           | 0.170                                 | 0.0009                                    |
| 9   | Gyproc FireLine (British Gypsum) – Inner Lining                              | 0.0300 (2×15 mm) | 0.240                                 | 0.1250                                    |
| Rsi | Internal Surface Resistance                                                  | —                | —                                     | 0.1300                                    |

**Calculated Total Thermal Resistance (RT): 6.06 m<sup>2</sup>K/W**

**Corrections Applied (per Digest 465):**

- Mechanical fasteners:  $\Delta U = 0.0022 \text{ W/m}^2\text{K}$
- Air gaps (BS EN ISO 6946 Annex F):  $\Delta U = 0.0080 \text{ W/m}^2\text{K}$

**Total Correction:** 0.0102 W/m<sup>2</sup>K

**Final U-Value:**

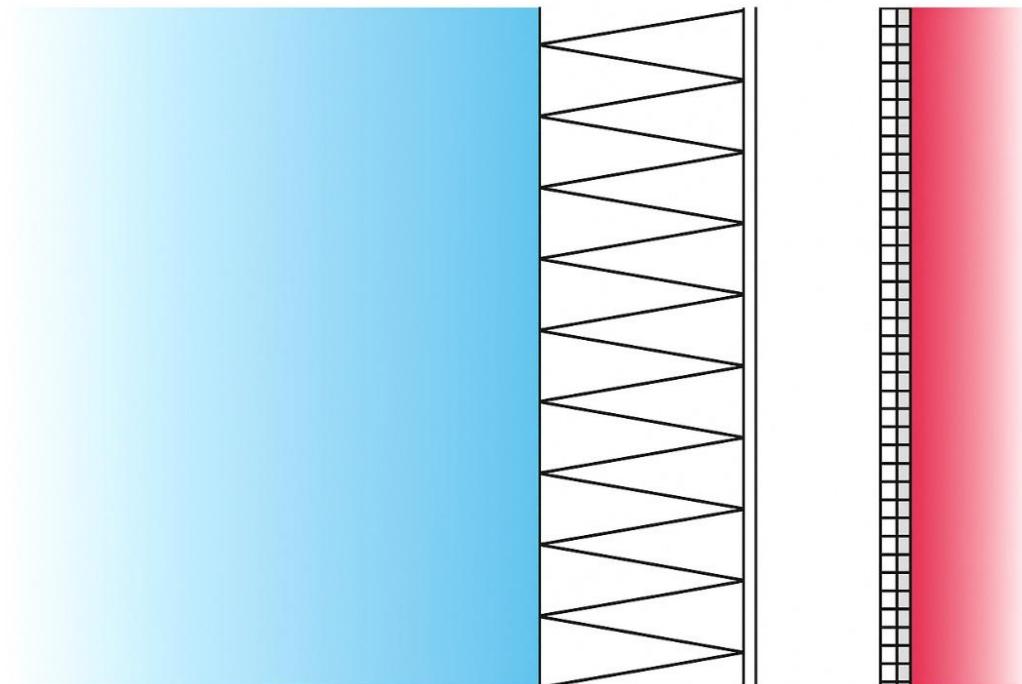
$$U = (1 / RT) + \Delta U = \mathbf{0.18 \text{ W/m}^2\text{K}}$$

All material thermal properties are referenced from **BS EN 12524**, **BS EN ISO 6946**, or manufacturer-certified data. Data quality aligns with BuildDesk classifications:

- **A:** Verified and continuously tested by third party
- **B:** Manufacturer data certified by third party
- **C:** Manufacturer-validated data
- **D:** General database values (BuildDesk)
- **E:** User-input data

**Compliance Benchmark:**  $U_{max} = 0.30 \text{ W/m}^2\text{K}$

**Result:**  $U = 0.18 \text{ W/m}^2\text{K} - Compliant$


## Documentation of the Component

**Thermal Transmittance (U-value)** according to *Digest 465*

**Source:** Façade Creations Technical Catalogue – External Walls

**Component:** External Wall System

**Calculated with:** BuildDesk 3.4.6



| Parameter                  | Description / Value                                            |
|----------------------------|----------------------------------------------------------------|
| <b>Standard Referenced</b> | Thermal Transmittance (U-value) according to <i>Digest 465</i> |
| <b>Source</b>              | Façade Creations Technical Catalogue – External Walls          |

| Parameter        | Description / Value  |
|------------------|----------------------|
| Component        | External Wall System |
| Software Used    | BuildDesk 3.4.6      |
| Steel Percentage | 0.25%                |

### Light Steel Frame Sections

| Section | Portion (%) | Consisting of Material Layers |
|---------|-------------|-------------------------------|
| A       | 99.75%      | Layers 3, 4, 5, 6a, 7, 8, 9   |
| B       | 0.25%       | Layers 3, 4, 5, 6b, 7, 8, 9   |

### Thermal Transfer Resistance – Upper Limit

| Parameter                 | Formula                                                                      | Result                  |
|---------------------------|------------------------------------------------------------------------------|-------------------------|
| UA [W/(m <sup>2</sup> K)] | (R <sub>i,A</sub> ) + R <sub>si</sub> + R <sub>se</sub> = 5.80 + 0.13 + 0.13 | 0.16                    |
| UB [W/(m <sup>2</sup> K)] | (R <sub>i,B</sub> ) + R <sub>si</sub> + R <sub>se</sub> = 5.62 + 0.13 + 0.13 | 0.17                    |
| RT'                       | A × UA + B × UB                                                              | 6.06 m <sup>2</sup> K/W |

### Thermal Transfer Resistance – Lower Limit

| Layer           | Formula                                                                                                   | Result (m <sup>2</sup> K/W) |
|-----------------|-----------------------------------------------------------------------------------------------------------|-----------------------------|
| R <sub>se</sub> | Fixed                                                                                                     | 0.13                        |
| R <sub>3"</sub> | d <sub>3</sub> / λ <sub>3</sub> = 0.1900 / 0.035                                                          | 5.43                        |
| R <sub>4"</sub> | d <sub>4</sub> / λ <sub>4</sub> = 0.0002 / 0.500                                                          | 0.00                        |
| R <sub>5"</sub> | d <sub>5</sub> / λ <sub>5</sub> = 0.0150 / 0.230                                                          | 0.07                        |
| R <sub>6"</sub> | d <sub>6</sub> / (λ <sub>6a</sub> × A + λ <sub>6b</sub> × B) = 0.1500 / (0.826 × 99.75% + 50.000 × 0.25%) | 0.16                        |
| R <sub>7"</sub> | d <sub>7</sub> / λ <sub>7</sub> = 0.0002 / 0.170                                                          | 0.00                        |
| R <sub>8"</sub> | d <sub>8</sub> / λ <sub>8</sub> = 0.0150 / 0.240                                                          | 0.06                        |
| R <sub>9"</sub> | d <sub>9</sub> / λ <sub>9</sub> = 0.0150 / 0.240                                                          | 0.06                        |

| Layer | Formula         | Result (m <sup>2</sup> K/W)  |
|-------|-----------------|------------------------------|
| Rsi   | Fixed           | 0.13                         |
| RT"   | Ri" + Rsi + Rse | <b>6.04 m<sup>2</sup>K/W</b> |

### Frame Details

| Parameter         | Value               |
|-------------------|---------------------|
| Kind of Frame     | Hybrid Frame        |
| Flange Width      | Not exceeding 50 mm |
| Stud Spacing (s)  | 0.600 m             |
| Stud Depth (d)    | 0.150 m             |
| Web Thickness (t) | 0.00150 m           |
| Steel Percentage  | 0.25%               |

### Weight Factor & Final Result

| Parameter                     | Formula / Calculation                                                               | Result                       |
|-------------------------------|-------------------------------------------------------------------------------------|------------------------------|
| Weight Factor (p)             | $p = 0.8 \times (RT'' / RT') + 0.32 - 0.2 \times (0.6 / s) - 0.04 \times (d / 0.1)$ | 0.857                        |
| Final Thermal Resistance (RT) | $RT = p \times RT' + (1 - p) \times RT''$                                           | <b>6.06 m<sup>2</sup>K/W</b> |

### Documentation of the Component

**Calculation Standard:** BS EN ISO 13788

**Source:** Façade Creations – External Wall Catalogue

**Component:** Façade Creations Wall System 1

**Software Used:** BuildDesk 3.4.6

### Overview

This condensation risk analysis has been carried out in accordance with **BS EN ISO 13788:2012** for a wall system featuring inhomogeneous layers. The results are specific to the selected section of the construction. For a comprehensive evaluation, it is recommended to perform additional

calculations at alternative positions in accordance with **BS 5250:2021 – Management of Moisture in Buildings**.

Please note that the list of material layers below may differ from those used in the U-value calculation printout, as only layers relevant to the condensation risk analysis are included.

#### Assignment: External Wall

| Name                                                  | Thickness [m] | $\lambda$ [W/(mK)] | $\mu$ [-] | sd [m] | R [m <sup>2</sup> K/W] |
|-------------------------------------------------------|---------------|--------------------|-----------|--------|------------------------|
| Rainscreen Duo-Slab (>90mm)                           | 0.1900        | 0.035              | 1.00      | 0.19   | 5.4286                 |
| Fire-Resistant Breather Membrane                      | 0.0002        | 0.500              | 8.33      | 0.00   | 0.0004                 |
| Cement-Bonded Particleboard                           | 0.0150        | 0.230              | 30.00     | 0.45   | 0.0652                 |
| Unventilated Air Layer (150 mm, horizontal heat flow) | 0.1500        | 0.826              | 1.00      | 0.15   | 0.1816                 |
| Polyethylene (0.15 mm)                                | 0.0002        | 0.170              | 300000.00 | 45.00  | 0.0009                 |
| Gyproc FireLine                                       | 0.0150        | 0.240              | 10.00     | 0.15   | 0.0625                 |
| Gyproc FireLine                                       | 0.0150        | 0.240              | 10.00     | 0.15   | 0.0625                 |

#### Material Data Quality Levels

| Grade    | Description                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------|
| <b>A</b> | Data entered and validated by the manufacturer or supplier, continuously tested by third party.                         |
| <b>B</b> | Data entered and validated by the manufacturer or supplier, certified by third party.                                   |
| <b>C</b> | Data entered and validated by the manufacturer or supplier.                                                             |
| <b>D</b> | Information entered by BuildDesk without special agreement with manufacturer, supplier, or others.                      |
| <b>E</b> | Information entered by the user of BuildDesk software without special agreement with manufacturer, supplier, or others. |

---

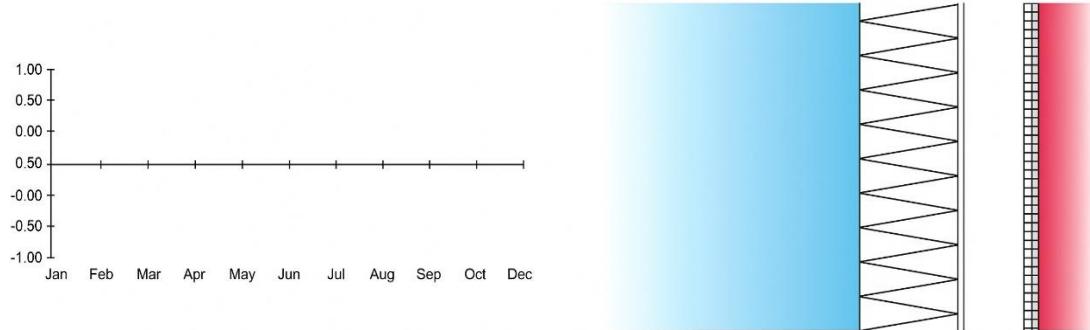
#### Calculation according to BS EN ISO 13788

**Source:** Own catalogue – External walls

**Component:** Façade Creations Wall System

## Condensation Risk Analysis – Summary of Main Results

### Calculation according to BS EN ISO 13788


#### ✓ Surface temperature to avoid critical surface moisture:

No risk of mold growth is expected.

#### ✓ Interstitial condensation:

No condensation is predicted at any interface during any month.

Component, condensation range



Interstitial condensation and evaporation per month  $g_c$  [ $g/m^2$ ]

#### Condensation Risk Analysis

Calculations in accordance with BS EN ISO 13788 are used as a guide to predict interstitial condensation. This methodology incorporates certain simplifications of the dynamic processes involved and therefore has some limitations.

For further information, it is recommended to follow the prescriptive guidance outlined in BS 5250:2021 – Management of Moisture in Buildings: Code of Practice, and BRE Information Paper: IP2/05 (Feb. 2005) ‘Modelling and Controlling Interstitial Condensation.’

# Documentation of the Component

**Calculation:** According to **BS EN ISO 13788**

**Source:** Internal catalogue – External walls

**Component:** Façade Creations Wall 1

**Software:** Calculated with BuildDesk 3.4.6

Surface Temperature to Avoid Critical Surface Humidity

## Calculation according to BS EN ISO 13788

**Location:** Manchester Airport

**Humidity class (BS EN ISO 13788 Annex A):** Dwellings with high occupancy (legacy classification)

**Return period (BS 5250:2021):** Once in 10 years ( $-1^{\circ}\text{C}$  external temperature, +4% external RH)

| Month | Te<br>(°C) | $\varphi_e$<br>(-) | Ti<br>(°C) | $\varphi_i$<br>(-) | pe<br>(Pa) | $\Delta p$<br>(Pa) | pi<br>(Pa) | ps(Tsi)<br>(Pa) | Tsi,min<br>(°C) | fRsi<br>(-) | Tsi<br>(°C) | Tse<br>(°C) |
|-------|------------|--------------------|------------|--------------------|------------|--------------------|------------|-----------------|-----------------|-------------|-------------|-------------|
| Jan   | 3.2        | 0.870              | 20.0       | 0.713              | 668        | 998                | 1666       | 2083            | 18.2            | 0.890       | 19.3        | 3.3         |
| Feb   | 3.1        | 0.840              | 20.0       | 0.704              | 641        | 1004               | 1645       | 2056            | 17.9            | 0.878       | 19.3        | 3.2         |
| Mar   | 4.8        | 0.800              | 20.0       | 0.681              | 688        | 903                | 1591       | 1988            | 17.4            | 0.830       | 19.4        | 4.9         |
| Apr   | 6.8        | 0.750              | 20.0       | 0.652              | 741        | 784                | 1525       | 1906            | 16.7            | 0.754       | 19.5        | 6.9         |
| May   | 10.3       | 0.720              | 20.0       | 0.632              | 902        | 576                | 1478       | 1847            | 16.3            | 0.614       | 19.6        | 10.4        |
| Jun   | 13.1       | 0.750              | 20.0       | 0.659              | 1130       | 410                | 1540       | 1925            | 16.9            | 0.551       | 19.7        | 13.1        |
| Jul   | 15.1       | 0.760              | 20.0       | 0.682              | 1304       | 291                | 1595       | 1993            | 17.5            | 0.481       | 19.8        | 15.1        |
| Aug   | 14.8       | 0.780              | 20.0       | 0.694              | 1312       | 309                | 1621       | 2027            | 17.7            | 0.561       | 19.8        | 14.8        |
| Sep   | 12.3       | 0.810              | 20.0       | 0.691              | 1158       | 457                | 1616       | 2019            | 17.7            | 0.696       | 19.7        | 12.4        |
| Oct   | 9.3        | 0.850              | 20.0       | 0.698              | 995        | 636                | 1631       | 2039            | 17.8            | 0.796       | 19.6        | 9.4         |
| Nov   | 5.7        | 0.860              | 20.0       | 0.700              | 787        | 849                | 1637       | 2046            | 17.9            | 0.851       | 19.4        | 5.8         |
| Dec   | 4.2        | 0.880              | 20.0       | 0.712              | 725        | 939                | 1664       | 2080            | 18.1            | 0.882       | 19.4        | 4.3         |

**Critical month:** January

**fRsi,max = 0.890**

**fRsi = 0.959**

↙  $fRsi > fRsi, max$  – the component complies.

## Explanation of Parameters

1. **Te:** External temperature
2. **φe:** External relative humidity
3. **Ti:** Internal temperature
4. **φi:** Internal relative humidity
5. **pe:** External partial pressure =  $\phi_e \times \text{psat}(Te)$ ;  $\text{psat}(Te)$  according to formula E.7/E.8 of BS EN ISO 13788
6. **Δp:** Partial pressure difference (includes 1.10 safety factor per BS EN ISO 13788 §4.2.4)
7. **pi:** Internal partial pressure =  $\phi_i \times \text{psat}(Ti)$ ;  $\text{psat}(Ti)$  according to formula E.7/E.8 of BS EN ISO 13788
8. **ps(Tsi):** Minimum saturation pressure on surface =  $pi / \phi_{si}$ , where  $\phi_{si} = 0.8$  (critical surface humidity)
9. **Tsi,min:** Minimum surface temperature derived from ps(Tsi) (formulas E.9 and E.10 of BS EN ISO 13788)
10. **fRsi:** Design temperature factor (per §3.1.2 of BS EN ISO 13788)
11. **Tsi:** Internal surface temperature =  $Ti - Rsi \times U \times (Ti - Te)$
12. **Tse:** External surface temperature =  $Te + Rse \times U \times (Ti - Te)$

## Documentation of the Component

**Standard Reference:** Calculation in accordance with BS EN ISO 13788

**Source:** Façade Creations Technical Catalogue – External Walls

**Component:** Axis Greengate Wall 1

### Interstitial Condensation – Main Results

**Calculation Standard:** BS EN ISO 13788

No condensation is predicted at any interface during any month of the year.

### Climatic Conditions

**Location:** Manchester Airport

**Humidity Class (BS EN ISO 13788 Annex A):** Legacy – Dwellings with High Occupancy

**Return Period (BS 5250:2021):** Once in 10 years (-1°C External Temperature, +4% External Relative Humidity)

| Month | Internal Temp (°C) | Internal RH (%) | External Temp (°C) | External RH (%) |
|-------|--------------------|-----------------|--------------------|-----------------|
| Jan   | 20.0               | 71.3            | 3.2                | 87.0            |

| Month | Internal Temp (°C) | Internal RH (%) | External Temp (°C) | External RH (%) |
|-------|--------------------|-----------------|--------------------|-----------------|
| Feb   | 20.0               | 70.4            | 3.1                | 84.0            |
| Mar   | 20.0               | 68.1            | 4.8                | 80.0            |
| Apr   | 20.0               | 65.2            | 6.8                | 75.0            |
| May   | 20.0               | 63.2            | 10.3               | 72.0            |
| Jun   | 20.0               | 65.9            | 13.1               | 75.0            |
| Jul   | 20.0               | 68.2            | 15.1               | 76.0            |
| Aug   | 20.0               | 69.4            | 14.8               | 78.0            |
| Sep   | 20.0               | 69.1            | 12.3               | 81.0            |
| Oct   | 20.0               | 69.8            | 9.3                | 85.0            |
| Nov   | 20.0               | 70.0            | 5.7                | 86.0            |
| Dec   | 20.0               | 71.2            | 4.2                | 88.0            |

---

## Double Bracket – X Value Analysis

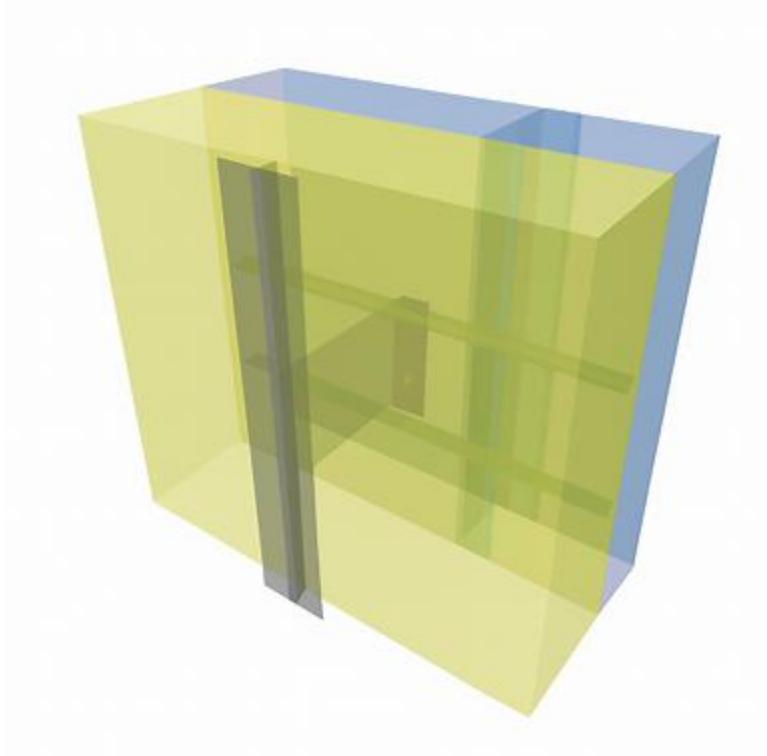
### Scope of Analysis:

- Material thermal conductivity diagram
- Temperature gradient diagrams
- Façade Creations – Analysis Input Data Sheet
- Façade Creations – Analysis Output Data Sheet

### Methodology:

Finite Element Analysis (FEA) was performed using **TRISCO software, version 15.0.01**, to determine the thermal transmittance (X value) of the double bracket assembly.

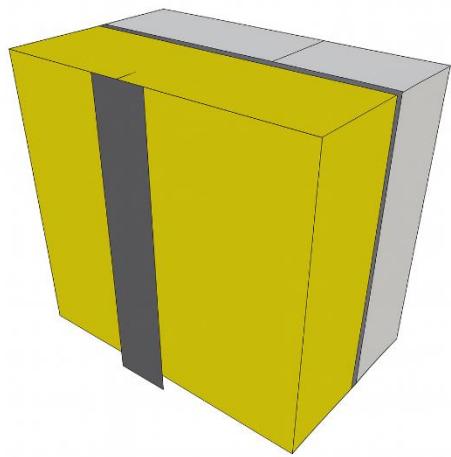
### Summary:


A representative sample area of **600 mm × 600 mm** was analyzed.

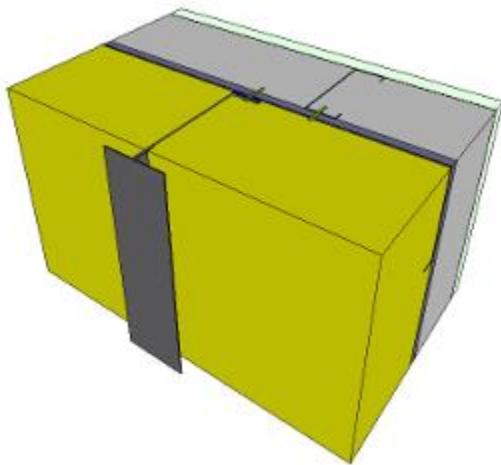
The calculated **X value of the bracket** was determined to be **0.115 W/K**.

### X Value Calculation

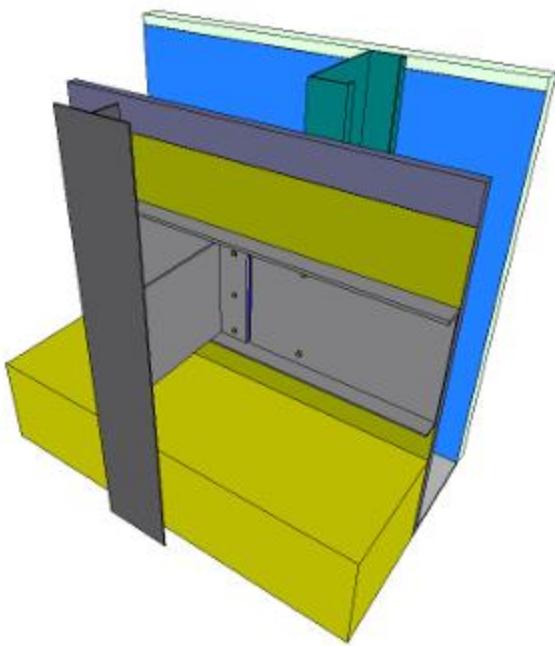
| Condition       | Heat Flow (Q) [W] | Temperature Difference ( $\Delta t$ ) [K] | Area (A) [m <sup>2</sup> ] | Thermal Transmittance (Q/ $\Delta t$ ) [W/K] |
|-----------------|-------------------|-------------------------------------------|----------------------------|----------------------------------------------|
| With Bracket    | 3.552             | 20                                        | 0.360                      | 0.178                                        |
| Without Bracket | 1.244             | 20                                        | 0.360                      | 0.062                                        |


$$X \text{ Value} = (Q_{\text{bkt}} / \Delta T) - (Q_{\text{no bkt}} / \Delta T) = 0.115 \text{ W/K}$$



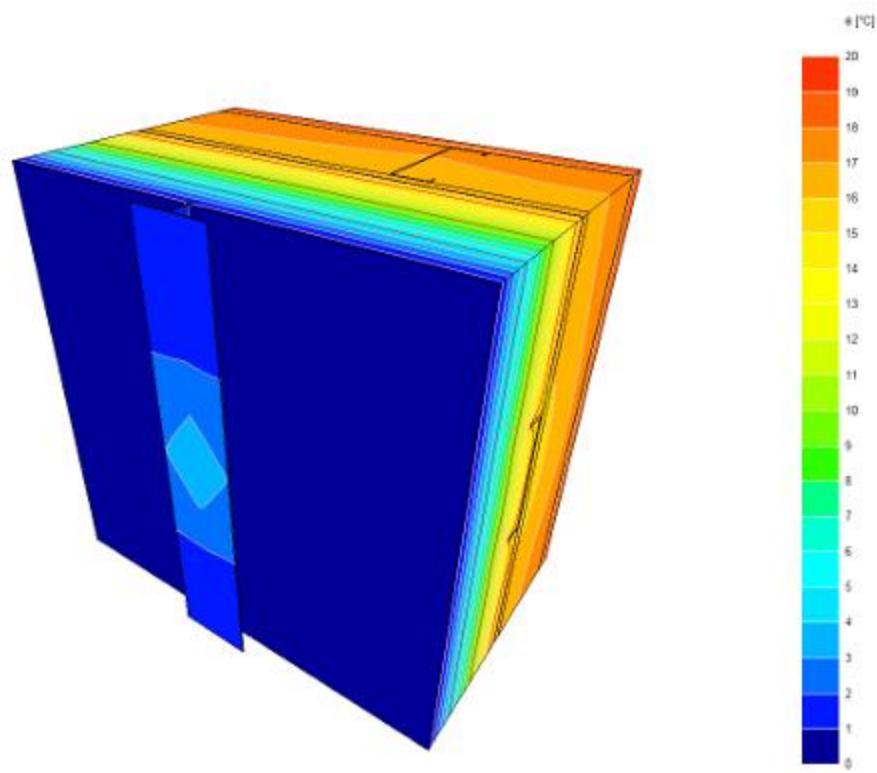

### Material Thermal Conductivity Diagram

Wall Section: 600 mm × 600 mm

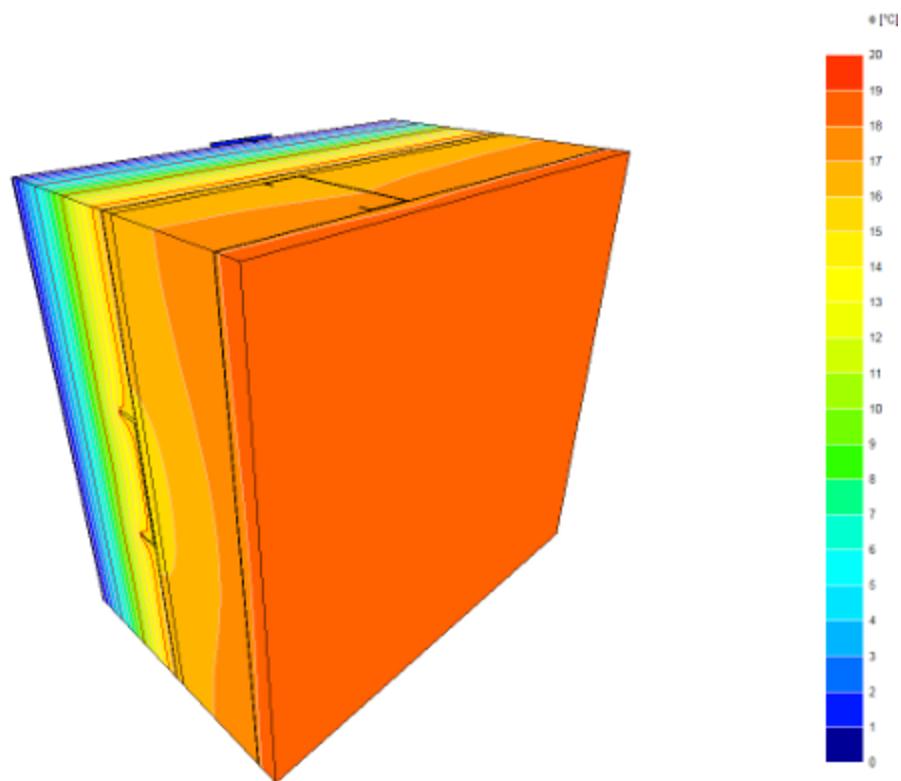

Heat Flow (Q): 3.552 W



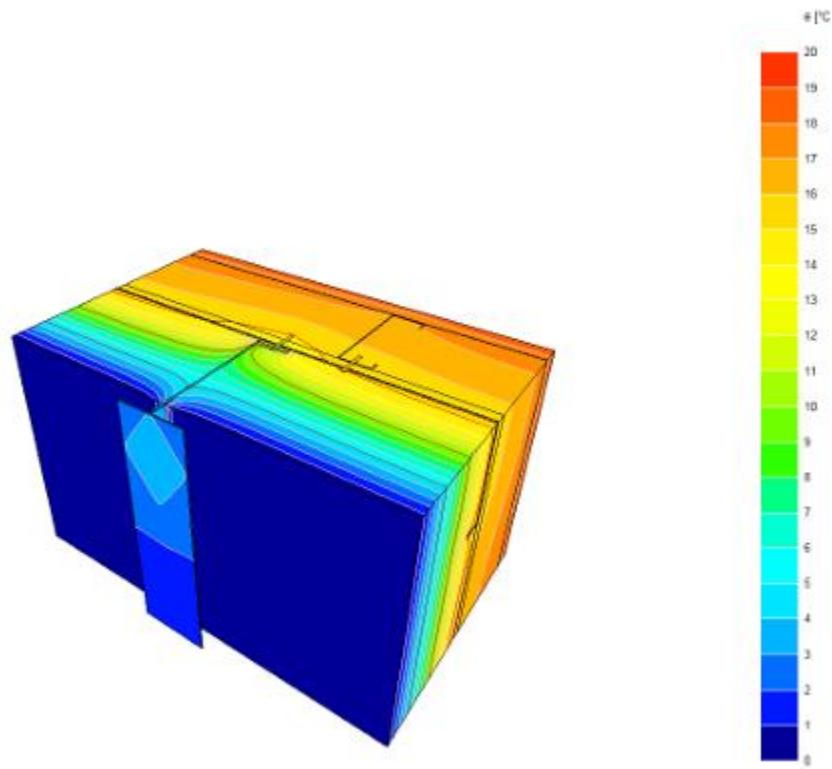
**Figure 11:** External Material Thermal Conductivity Diagram




**Figure 12:** Cut-Through Bracket Thermal Conductivity Diagram




**Figure 13:** Thermal Conductivity Diagram – Materials Cut Back for Clarity


#### Temperature Gradient Diagrams



**Figure 14:** External Temperature Gradient Diagram



**Figure 15:** Internal Temperature Gradient Diagram



**Figure 16:** External Temperature Gradient Diagram – Cut Through Bracket

## TRISCO – Input Data

## TRISCO Data File: 01\_load.trc

## Colors and Materials

| Col. | Type     | Subtype  | Phys. Flow | Geom. Flow                  | Name        | eps1 / eps2 [- / -] |
|------|----------|----------|------------|-----------------------------|-------------|---------------------|
| 8    | MATERIAL | —        | —          | —                           | Aluminium   | —                   |
| 11   | MATERIAL | —        | —          | Stainless Steel             | —           | —                   |
| 13   | MATERIAL | —        | —          | Steel                       | —           | —                   |
| 24   | MATERIAL | —        | —          | Aluminium                   | —           | —                   |
| 42   | MATERIAL | —        | —          | VCL                         | —           | —                   |
| 43   | MATERIAL | —        | —          | Breather                    | —           | —                   |
| 98   | MATERIAL | —        | —          | Fastframe Pack              | —           | —                   |
| 136  | MATERIAL | —        | —          | Reinforced Concrete (Steel) | —           | —                   |
| 151  | MATERIAL | —        | —          | Insulation (0.035 W/mK)     | —           | —                   |
| 161  | MATERIAL | —        | —          | Plasterboard                | —           | —                   |
| 174  | BC_SIMPL | HI_NORML | HOR        | Interior                    | —           | —                   |
| 185  | BC_SIMPL | NIHIL    | —          | Highly Ventilated Cavity    | —           | —                   |
| 200  | EQUIMAT  | CAVITY   | HOR        | Cavity Non-Vent Physical    | 0.90 / 0.90 | —                   |

## Material Properties

| Col. | $\lambda$ (W/mK) | $\varepsilon$ (-) | t (°C) | h (W/m <sup>2</sup> K) | q (W/m <sup>2</sup> ) | ta (°C) | hc (W/m <sup>2</sup> K) | Pc (W/m) | tr (°C) | Standard |
|------|------------------|-------------------|--------|------------------------|-----------------------|---------|-------------------------|----------|---------|----------|
| 98   | 0.220            | —                 | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 136  | 2.500            | —                 | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 151  | 0.035            | —                 | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 161  | 0.250            | —                 | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 174  | —                | —                 | 20.0   | 7.70                   | 0                     | —       | —                       | —        | —       | EN10077  |
| 185  | —                | —                 | 0.0    | 7.70                   | 0                     | —       | —                       | —        | —       | NIHIL    |
| 200  | 0.836            | —                 | —      | —                      | —                     | —       | —                       | —        | —       | EN10077  |

### Calculation Parameters

- Iteration cycles: **5**
- Maximum iterations per cycle: **10,000**
- Max. temperature difference (within each iteration cycle): **0.0001°C**
- Max. temperature difference (between iteration cycles): **0.001°C**
- Heat flow divergence (total object): **0.001%**
- Heat flow divergence (worst node): **1%**
- Automatic recalculation of thermal values enabled
- Default temperature difference across airspace: **10°C**

## TRISCO – Calculation Results

**Data file:** 01\_load.trc

**Total number of nodes:** 1,361,400

### Convergence and Accuracy:

- Heat flow divergence (total object): **0.000407319 %**
- Heat flow divergence (worst node): **0.990744 %**

### Thermal Parameters:

- **Total Heat Flow (Q):** 3.552 W
- **Internal Temperature (ti):** 20.000 °C
- **External Temperature (te):** 0.000 °C
- **Analyzed Area (A<sub>1</sub>):** 0.36 m<sup>2</sup>
- **Coordinate Range:**
  - X: 0 → 126
  - Y: 34 → 34
  - Z: 0 → 123

### Material Temperature Summary

| Material                      | $t_{min}$ (°C) | X  | Y  | Z  | $t_{max}$ (°C) | X   | Y  | Z   |
|-------------------------------|----------------|----|----|----|----------------|-----|----|-----|
| Aluminium (8)                 | 3.06           | 57 | 3  | 46 | 15.48          | 126 | 48 | 46  |
| Stainless Steel (11)          | 10.04          | 62 | 45 | 62 | 15.59          | 85  | 58 | 47  |
| Steel (13)                    | 15.28          | 85 | 53 | 62 | 17.33          | 92  | 85 | 123 |
| Aluminium (24)                | 1.20           | 46 | 1  | 0  | 4.03           | 57  | 10 | 62  |
| VCL (42)                      | 16.84          | 80 | 85 | 62 | 17.87          | 0   | 86 | 0   |
| Breather (43)                 | 14.01          | 62 | 48 | 61 | 16.60          | 0   | 49 | 0   |
| Fastframe Pack (98)           | 9.65           | 56 | 46 | 65 | 14.50          | 67  | 47 | 77  |
| Reinforced Concrete (136)     | 14.06          | 62 | 49 | 61 | 16.62          | 0   | 53 | 0   |
| Insulation (0.035 W/mK) (151) | 0.37           | 83 | 7  | 61 | 16.59          | 0   | 48 | 0   |
| Plasterboard (161)            | 16.94          | 81 | 86 | 62 | 18.89          | 0   | 92 | 0   |

## Boundary Conditions

| Type                           | Name                | Temperature (°C) | Heat Flow In (W) | Heat Flow Out (W) |
|--------------------------------|---------------------|------------------|------------------|-------------------|
| Interior (174)                 | Simplified Boundary | 18.45            | <b>3.5522</b>    | 0.0000            |
| Highly Ventilated Cavity (185) | Simplified Boundary | 0.37             | 0.0000           | <b>3.5523</b>     |

## Observation:

- The model achieved stable convergence within tolerance limits.
- Heat flow balance between internal and external boundaries ( $\approx 3.552$  W) confirms steady-state equilibrium.
- Temperature gradients across materials align with expected conductivity behavior - higher conductivity metals (aluminum, steel) show steeper gradients compared to insulation and plasterboard.

## Double bracket – centre area for deduction to ascertain X value of bracket

Material Thermal Conductivity Diagram.

Wall section = 600mm x 600mm

$Q = 1.244$  W

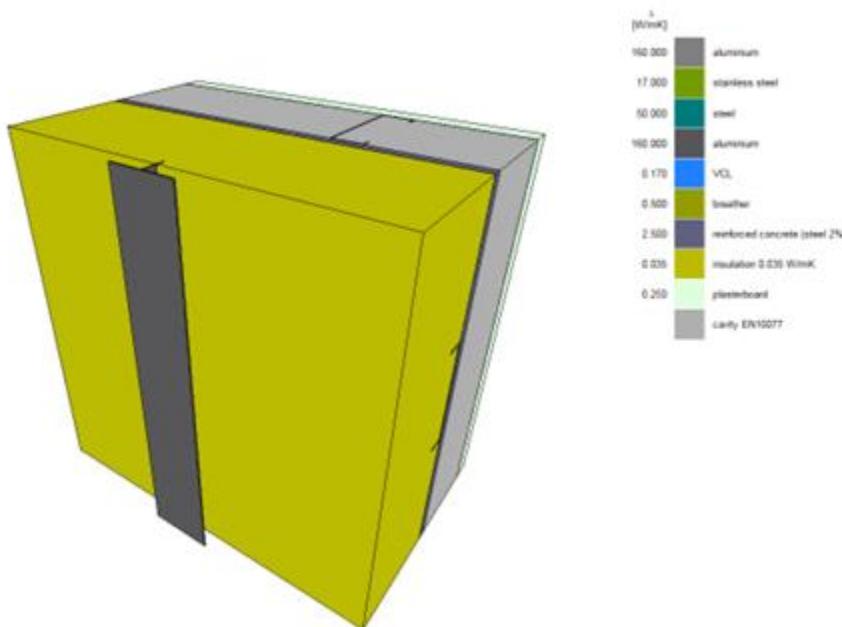
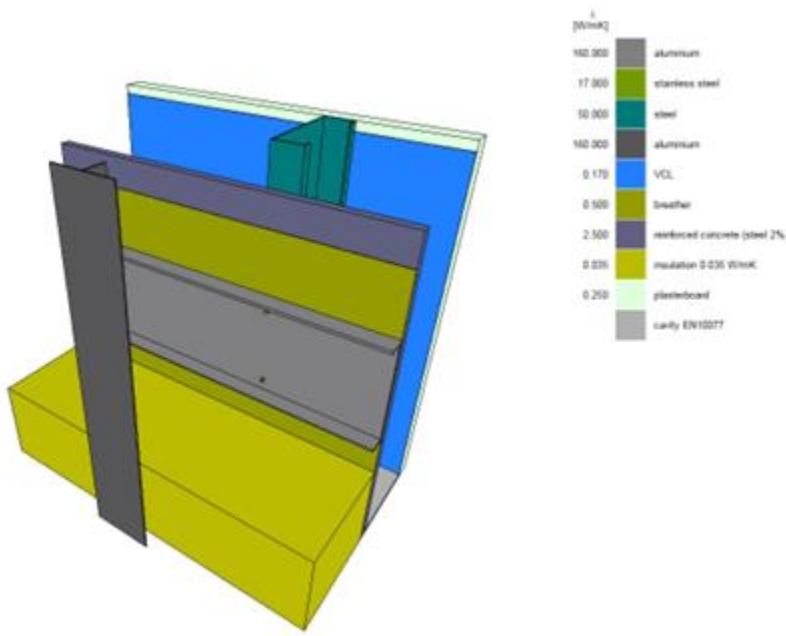
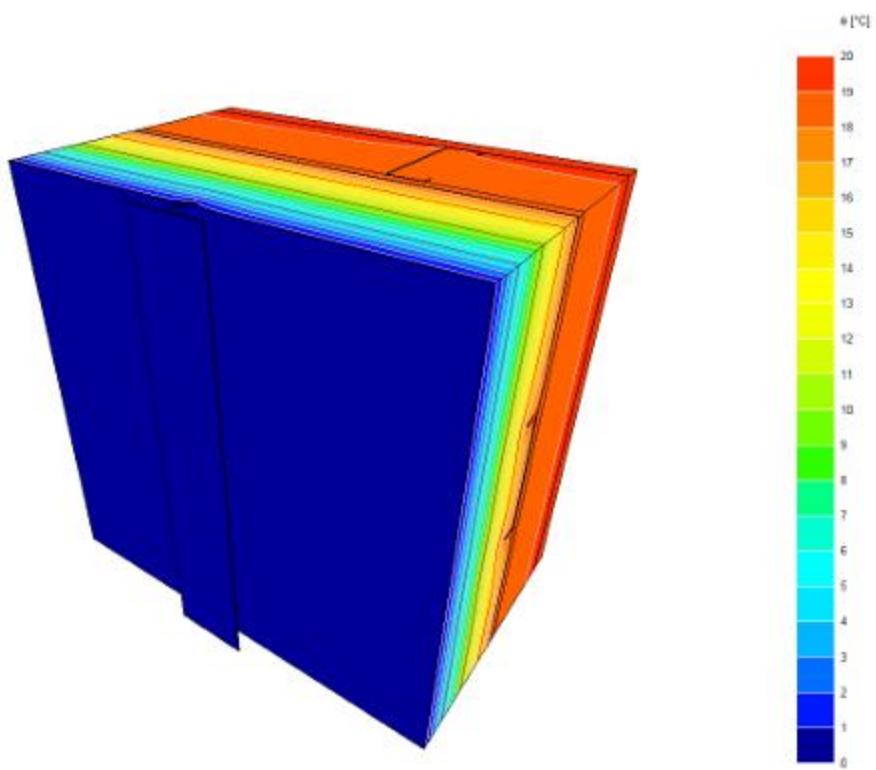
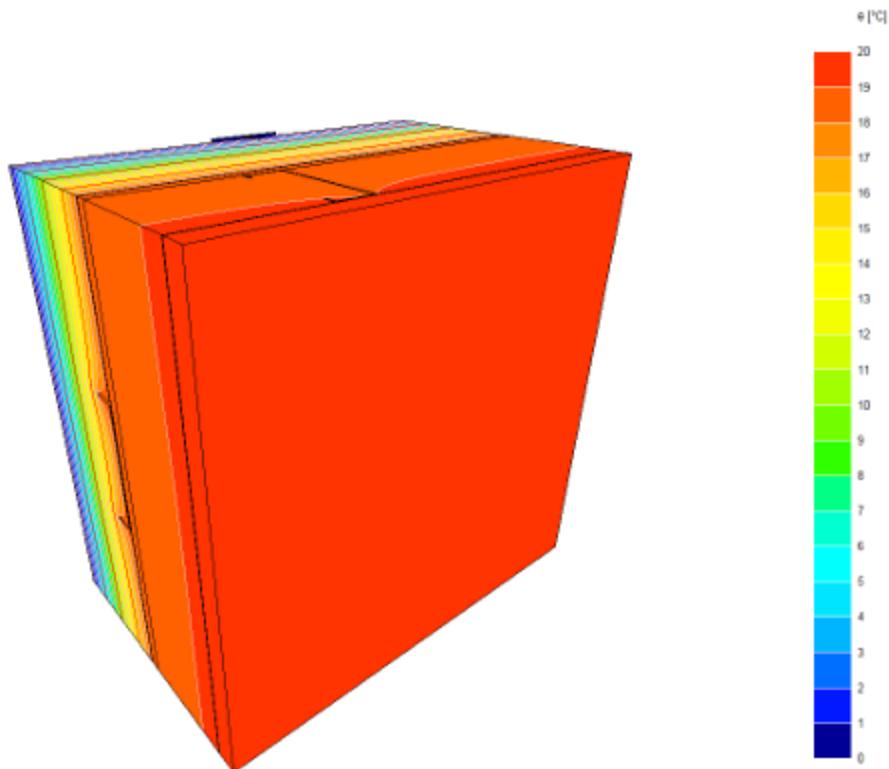





Figure 17 External material thermal conductivity diagram




**Figure 18:** Thermal conductivity diagram – materials cut back for clarity

### Temperature Gradient Diagrams



**Figure 19:** External temperature gradient diagram



**Figure 20:** Internal temperature gradient diagram

### TRISCO – Input Data

**TRISCO data file:** 02 load no bracket.trc

### COLOURS

| Col. | Type     | Subtype | Phys. flow | Geom. flow | Name                      | eps1 / eps2 [- / -] |
|------|----------|---------|------------|------------|---------------------------|---------------------|
| 8    | MATERIAL |         |            |            | aluminium                 |                     |
| 11   | MATERIAL |         |            |            | stainless_steel           |                     |
| 13   | MATERIAL |         |            |            | steel                     |                     |
| 24   | MATERIAL |         |            |            | aluminium                 |                     |
| 42   | MATERIAL |         |            |            | VCL                       |                     |
| 43   | MATERIAL |         |            |            | breather                  |                     |
| 136  | MATERIAL |         |            |            | reinforced_concrete_(stee |                     |
| 151  | MATERIAL |         |            |            | insulation_0.035_W/mK_    |                     |
| 161  | MATERIAL |         |            |            | plasterboard              |                     |

| Col. | Type     | Subtype  | Phys. flow | Geom. flow | Name                      | eps1 / eps2 [- / -] |
|------|----------|----------|------------|------------|---------------------------|---------------------|
| 174  | BC_SIMPL | HI_NORML | HOR        |            | interior                  |                     |
| 185  | BC_SIMPL | NIHIL    |            |            | highly_ventilated_cavity, |                     |
| 200  | EQUIMAT  | CAVITY   | HOR        | Yx         | cavity_non-vent_physical  | 0.90 / 0.90         |

## Thermal Properties

| Col. | $\lambda$ [W/mK] | $\varepsilon$ [-] | t [°C] | h [W/m <sup>2</sup> K] | q [W/m <sup>2</sup> ] | ta [°C] | hc [W/m <sup>2</sup> K] | Pc [W/m] | tr [°C] | Standard |
|------|------------------|-------------------|--------|------------------------|-----------------------|---------|-------------------------|----------|---------|----------|
| 8    | 160.000          |                   |        |                        |                       |         |                         |          |         |          |
| 11   | 17.000           |                   |        |                        |                       |         |                         |          |         |          |
| 13   | 50.000           |                   |        |                        |                       |         |                         |          |         |          |
| 24   | 160.000          |                   |        |                        |                       |         |                         |          |         |          |
| 42   | 0.170            |                   |        |                        |                       |         |                         |          |         |          |
| 43   | 0.500            |                   |        |                        |                       |         |                         |          |         |          |
| 136  | 2.500            |                   |        |                        |                       |         |                         |          |         |          |
| 151  | 0.035            |                   |        |                        |                       |         |                         |          |         |          |
| 161  | 0.250            |                   |        |                        |                       |         |                         |          |         |          |
| 174  |                  |                   | 20.0   | 7.70                   | 0                     |         |                         |          |         | EN10077  |
| 185  |                  |                   | 0.0    | 7.70                   | 0                     |         |                         |          |         | NIHIL    |
| 200  | 0.786            |                   |        |                        |                       |         |                         |          |         | EN10077  |

## CALCULATION PARAMETERS

- Iteration cycles: **5**
- Maximum number of iterations (within each iteration cycle): **10000**
- Maximum temperature difference (within each iteration cycle): **0.0001°C**
- Maximum temperature difference (between iteration cycles): **0.001°C**
- Heat flow divergence for total object: **0.001 %**
- Heat flow divergence for worst node: **1 %**
- Automatic recalculation of thermal values: **Enabled**
- Default temperature difference across airspace: **10°C**

## TRISCO – Calculation Results

**TRISCO data file:** 02 load no bracket.trc

## Calculation Summary

- **Number of nodes:** 1,361,272
- **Heat flow divergence for total object:** 6.54042e-05 %
- **Heat flow divergence for worst node:** 0.94624 %

### U-value Calculation

$$U_{\text{wall}} = A_1 Q / (t_i - t_e) = 0.173 \text{ W}/(\text{m}^2 \cdot \text{cdotpK}) Q: 1.244 \text{ W}$$

- **$t_i$ :** 20.0000°C
- **$t_e$ :** 0.0000°C
- **$A_1$ :** 0.36 m<sup>2</sup>
- **Coordinates:** Xmin=0, Xmax=126, Ymin=34, Ymax=34, Zmin=0, Zmax=123

### Temperature Extremes per Material

| Col. | Type     | Name                      | Tmin [°C] | X  | Y  | Z  | Tmax [°C] | X   | Y  | Z   |
|------|----------|---------------------------|-----------|----|----|----|-----------|-----|----|-----|
| 8    | MATERIAL | aluminium                 | 18.4367   | 0  | 40 | 43 | 18.4983   | 85  | 48 | 60  |
| 11   | MATERIAL | stainless_steel           | 18.4880   | 86 | 46 | 74 | 18.5958   | 85  | 58 | 48  |
| 13   | MATERIAL | steel                     | 18.5411   | 92 | 53 | 63 | 19.0207   | 92  | 85 | 123 |
| 24   | MATERIAL | aluminium                 | 0.0636    | 46 | 1  | 0  | 0.0818    | 58  | 10 | 64  |
| 42   | MATERIAL | VCL                       | 18.9673   | 80 | 85 | 62 | 19.1726   | 0   | 86 | 123 |
| 43   | MATERIAL | breather                  | 18.4473   | 0  | 48 | 43 | 18.6105   | 83  | 49 | 123 |
| 136  | MATERIAL | reinforced_concrete_(stee | 18.4598   | 0  | 49 | 76 | 18.6446   | 81  | 53 | 123 |
| 151  | MATERIAL | insulation_0.035_W/mK_    | 0.0758    | 58 | 7  | 0  | 18.6038   | 83  | 48 | 123 |
| 161  | MATERIAL | plasterboard              | 18.9973   | 81 | 86 | 62 | 19.5699   | 0   | 92 | 123 |
| 174  | BC_SIMPL | interior                  | 19.4932   | 84 | 92 | 62 | 19.5699   | 0   | 92 | 123 |
| 185  | BC_SIMPL | highly_ventilated_cavity, | 0.0636    | 46 | 1  | 0  | 0.4553    | 126 | 7  | 68  |
| 200  | EQUIMAT  | cavity_non-vent_physical  | 18.4831   | 0  | 53 | 70 | 19.1531   | 0   | 85 | 123 |

### Boundary Conditions – Heat Flow Summary

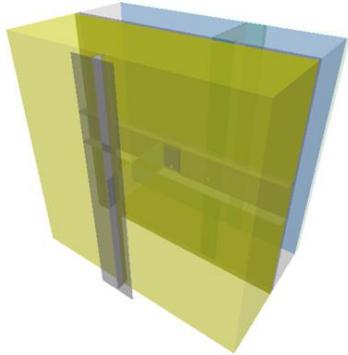
| Col. | Type     | Name                      | ta [°C] | Flow In [W] | Flow Out [W] |
|------|----------|---------------------------|---------|-------------|--------------|
| 174  | BC_SIMPL | interior                  | —       | 1.2442      | 0.0000       |
| 185  | BC_SIMPL | highly_ventilated_cavity, | —       | 0.0000      | 1.2442       |

# Single Bracket

## X Value Analysis

- Material thermal conductivity diagram
- Temperature gradient diagrams
- Façade Creations – Analysis Input Data Sheet
- Façade Creations – Analysis Output Data Sheet

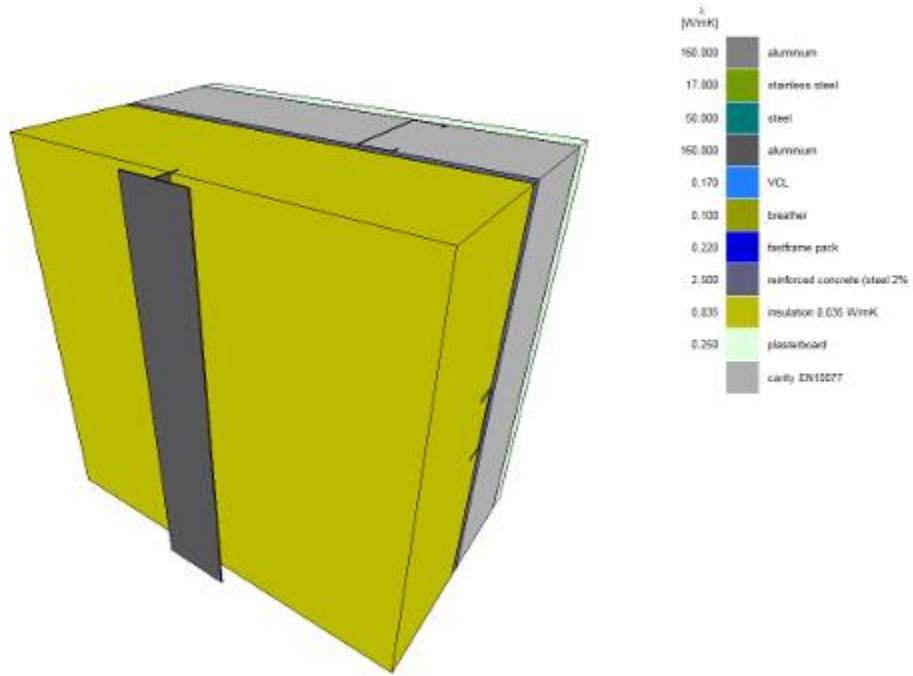
Finite Element Analysis undertaken using **TRISCO version 15.0.01** software.

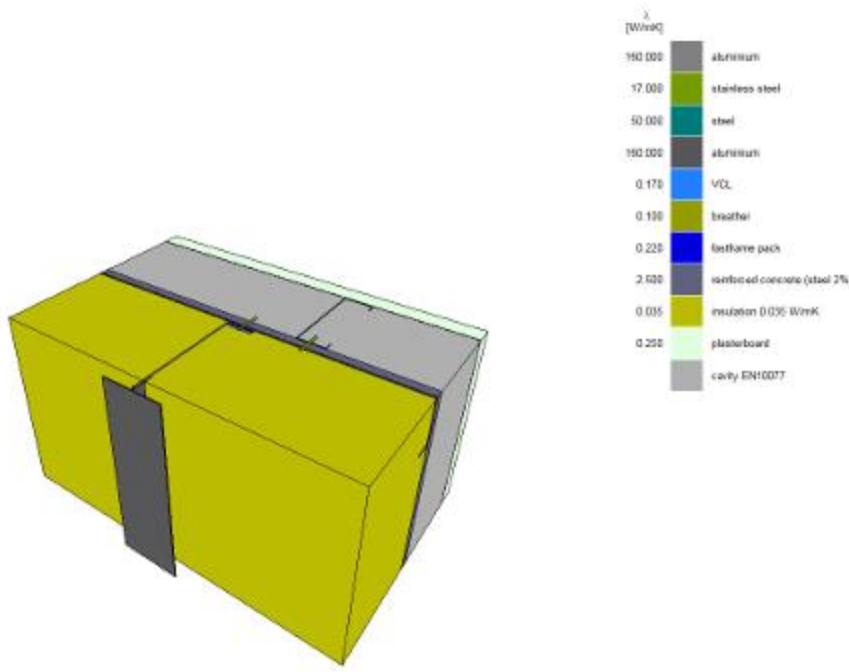

### Summary

A sample area of **600mm x 600mm** was examined, and the **X value** of the bracket was found to be **0.071 W/K**.

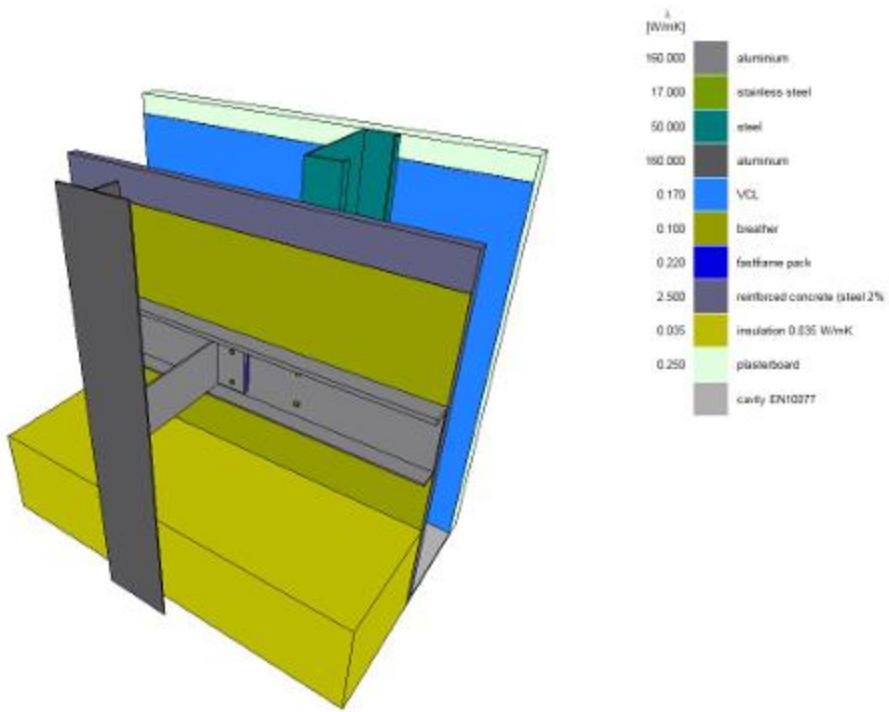
### X Value Calculation

| Parameter   | With Bracket         | Without Bracket      |
|-------------|----------------------|----------------------|
| <b>Q</b>    | 2.667 W              | 1.241 W              |
| <b>ΔT</b>   | 20 K                 | 20 K                 |
| <b>A</b>    | 0.360 m <sup>2</sup> | 0.360 m <sup>2</sup> |
| <b>Q/ΔT</b> | 0.133 W/K            | 0.062 W/K            |


$$X = (Q_{bkt}/\Delta T) - (Q_{nobkt}/\Delta T) = 0.071 \text{ W/K}$$

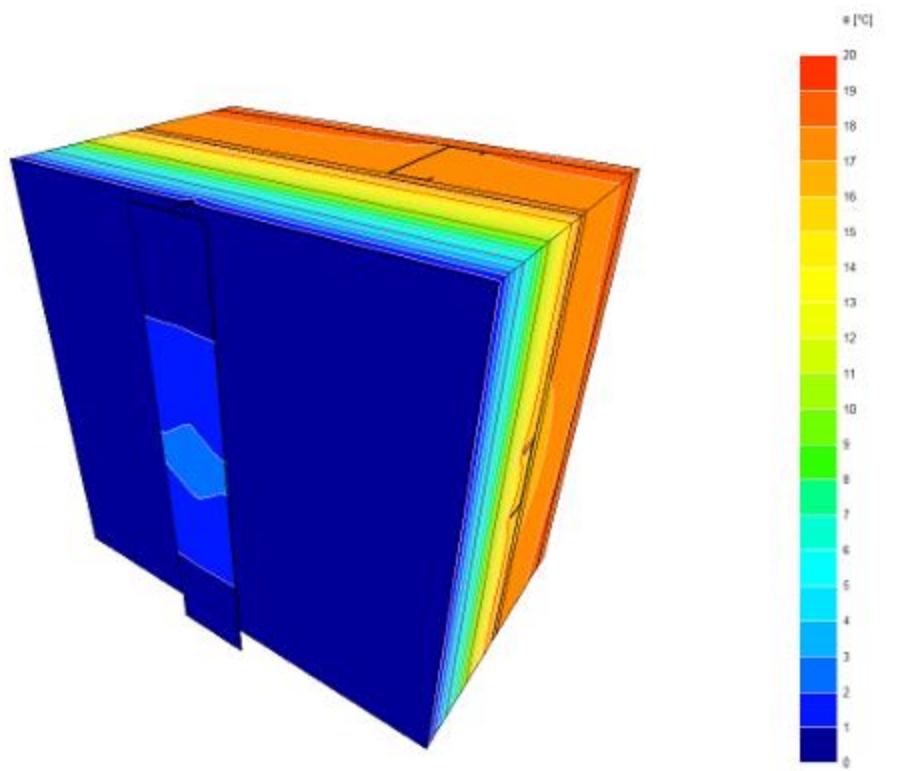



## Material Thermal Conductivity Diagram.

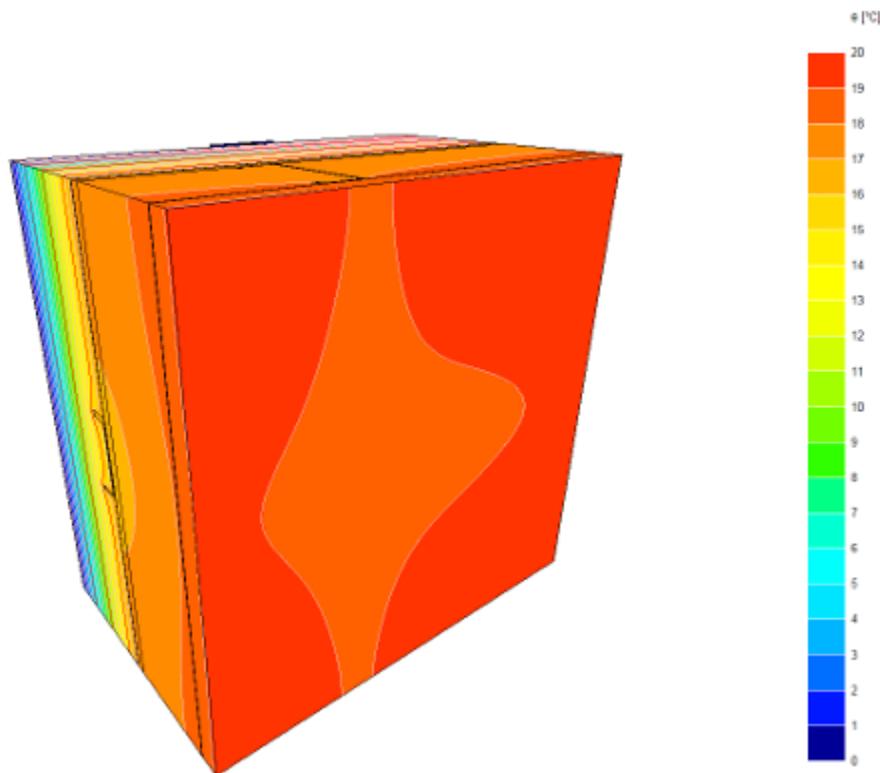

Wall section = 600mm x 600mm

$Q = 2.667 \text{ W}$

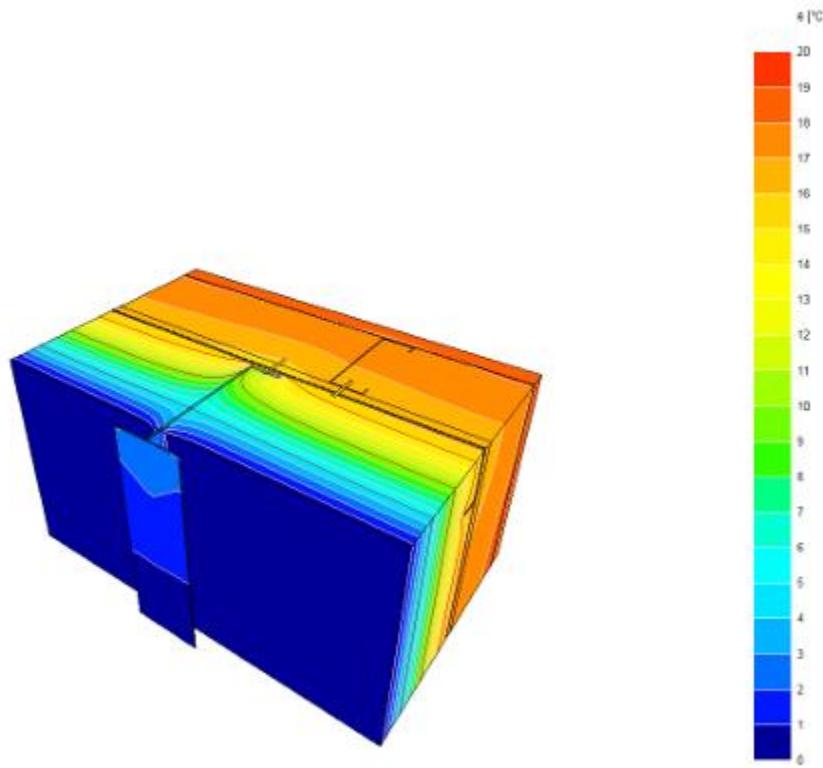





**Figure 22:** Cut through bracket thermal conductivity diagram




**Figure 23:** Thermal conductivity diagram – materials cut back for clarity


### Temperature Gradient Diagrams



**Figure 24:** External temperature gradient diagram



**Figure 25:** Internal temperature gradient diagram



**Figure 26:** External temperature gradient diagram cut through bracket

### TRISCO – Input Data

**TRISCO Data File:** 03\_res.trc

#### COLOURS TABLE

| Col. | Type     | Subtype | Phys. flow | Geom. flow | Name            | eps1 / eps2 [- / -] |
|------|----------|---------|------------|------------|-----------------|---------------------|
| 8    | MATERIAL |         |            |            | Aluminium       |                     |
| 11   | MATERIAL |         |            |            | Stainless Steel |                     |
| 13   | MATERIAL |         |            |            | Steel           |                     |
| 24   | MATERIAL |         |            |            | Aluminium       |                     |
| 42   | MATERIAL |         |            |            | VCL             |                     |
| 43   | MATERIAL |         |            |            | Breather        |                     |

| Col. | Type     | Subtype  | Phys. flow | Geom. flow | Name                        | eps1 / eps2 [- / -] |
|------|----------|----------|------------|------------|-----------------------------|---------------------|
| 98   | MATERIAL |          |            |            | Fastframe Pack              |                     |
| 136  | MATERIAL |          |            |            | Reinforced Concrete (Steel) |                     |
| 151  | MATERIAL |          |            |            | Insulation 0.035 W/mK       |                     |
| 161  | MATERIAL |          |            |            | Plasterboard                |                     |
| 174  | BC_SIMPL | HI_NORML | HOR        |            | Interior                    |                     |
| 185  | BC_SIMPL | NIHIL    |            |            | Highly Ventilated Cavity    |                     |
| 200  | EQUIMAT  | CAVITY   | HOR        | Yx         | Cavity (Non-Vent Physical)  | 0.90 / 0.90         |

## THERMAL PROPERTIES

## CALCULATION PARAMETERS

- **Iteration cycles:** 5
- **Maximum number of iterations (per cycle):** 10,000
- **Max temperature difference (within cycle):** 0.0001 °C
- **Max temperature difference (between cycles):** 0.001 °C
- **Heat flow divergence (total object):** 0.001 %
- **Heat flow divergence (worst node):** 1 %
- **Automatic recalculation of thermal values:** Enabled
- **Default temperature difference across airspace:** 10 °C

Figure 27: TRISCO – Input Data

**TRISCO Data File:** 03 res.trc

## COLOURS

| Col. | Type     | Subtype  | Phys. Flow | Geom. Flow | Name                        | eps1 / eps2 [- / - ] |
|------|----------|----------|------------|------------|-----------------------------|----------------------|
| 8    | MATERIAL |          |            |            | Aluminium                   |                      |
| 11   | MATERIAL |          |            |            | Stainless Steel             |                      |
| 13   | MATERIAL |          |            |            | Steel                       |                      |
| 24   | MATERIAL |          |            |            | Aluminium                   |                      |
| 42   | MATERIAL |          |            |            | VCL                         |                      |
| 43   | MATERIAL |          |            |            | Breather                    |                      |
| 98   | MATERIAL |          |            |            | Fastframe Pack              |                      |
| 136  | MATERIAL |          |            |            | Reinforced Concrete (Steel) |                      |
| 151  | MATERIAL |          |            |            | Insulation 0.035 W/mK       |                      |
| 161  | MATERIAL |          |            |            | Plasterboard                |                      |
| 174  | BC_SIMPL | HI_NORML | HOR        |            | Interior                    |                      |
| 185  | BC_SIMPL | NIHIL    |            |            | Highly Ventilated Cavity    |                      |
| 200  | EQUIMAT  | CAVITY   | HOR        | Yx         | Cavity (Non-Vent Physical)  | 0.90 / 0.90          |

## THERMAL PROPERTIES

| Col. | $\lambda$ [W/mK] | $\epsilon$ [-] | t [°C] | h [W/m <sup>2</sup> K] | q [W/m <sup>2</sup> ] | ta [°C] | hc [W/m <sup>2</sup> K] | Pc [W/m] | tr [°C] | Standard |
|------|------------------|----------------|--------|------------------------|-----------------------|---------|-------------------------|----------|---------|----------|
| 8    | 160.000          |                |        |                        |                       |         |                         |          |         |          |
| 11   | 17.000           |                |        |                        |                       |         |                         |          |         |          |
| 13   | 50.000           |                |        |                        |                       |         |                         |          |         |          |
| 24   | 160.000          |                |        |                        |                       |         |                         |          |         |          |
| 42   | 0.170            |                |        |                        |                       |         |                         |          |         |          |
| 43   | 0.100            |                |        |                        |                       |         |                         |          |         |          |
| 98   | 0.220            |                |        |                        |                       |         |                         |          |         |          |
| 136  | 2.500            |                |        |                        |                       |         |                         |          |         |          |
| 151  | 0.035            |                |        |                        |                       |         |                         |          |         |          |
| 161  | 0.250            |                |        |                        |                       |         |                         |          |         |          |
| 174  |                  |                | 20.0   | 7.70                   | 0                     |         |                         |          |         | EN10077  |
| 185  |                  |                | 0.0    | 7.70                   | 0                     |         |                         |          |         | NIHIL    |
| 200  | 0.831            |                |        |                        |                       |         |                         |          |         | EN10077  |

## CALCULATION PARAMETERS

| Parameter                                      | Description                          | Value   |
|------------------------------------------------|--------------------------------------|---------|
| Iteration Cycles                               | Number of iteration cycles           | 5       |
| Max Iterations per Cycle                       | Maximum iterations within each cycle | 10,000  |
| Max Temp. Difference (within cycle)            | °C                                   | 0.0001  |
| Max Temp. Difference (between cycles)          | °C                                   | 0.001   |
| Heat Flow Divergence (Total Object)            | %                                    | 0.001   |
| Heat Flow Divergence (Worst Node)              | %                                    | 1       |
| Automatic Recalculation of Thermal Values      | —                                    | Enabled |
| Default Temperature Difference Across Airspace | °C                                   | 10      |

## TRISCO - Calculation Results

TRISCO Data File: 03 res.trc

- **Number of nodes:** 1,339,380
- **Heat flow divergence (total object):** 0.000338536 %
- **Heat flow divergence (worst node):** 0.656343 %
- **Total heat flow, Q:** 2.667 W
- **Interior temperature, ti:** 20.0000 °C
- **Exterior temperature, te:** 0.0000 °C
- **Area, A1:** 0.36 m<sup>2</sup>
- **Coordinate bounds:** Xmin=0, Xmax=126; Ymin=34, Ymax=34; Zmin=0, Zmax=121

### Material Temperature Data

| Col | Type     | Name                      | tmin [°C] | X  | Y  | Z  | tmax [°C] | X   | Y  | Z   |
|-----|----------|---------------------------|-----------|----|----|----|-----------|-----|----|-----|
| 8   | MATERIAL | aluminium                 | 2.3796    | 57 | 3  | 53 | 16.2126   | 126 | 48 | 55  |
| 11  | MATERIAL | stainless_steel           | 10.7310   | 62 | 45 | 56 | 16.5495   | 85  | 58 | 55  |
| 13  | MATERIAL | steel                     | 16.3617   | 87 | 53 | 61 | 17.9962   | 92  | 85 | 121 |
| 24  | MATERIAL | aluminium                 | 0.7395    | 46 | 1  | 0  | 3.1949    | 57  | 10 | 61  |
| 42  | MATERIAL | VCL                       | 17.6457   | 80 | 85 | 60 | 18.3812   | 0   | 86 | 0   |
| 43  | MATERIAL | breather                  | 14.9832   | 62 | 48 | 56 | 17.3572   | 0   | 49 | 0   |
| 98  | MATERIAL | fastframe_pack            | 10.2474   | 56 | 46 | 60 | 15.3683   | 67  | 47 | 68  |
| 136 | MATERIAL | reinforced_concrete_steel | 15.0883   | 62 | 49 | 56 | 17.3835   | 80  | 53 | 121 |
| 151 | MATERIAL | insulation_0.035_W/mK     | 0.3459    | 60 | 7  | 0  | 17.3255   | 0   | 48 | 0   |
| 161 | MATERIAL | plasterboard              | 17.7137   | 81 | 86 | 60 | 19.1566   | 0   | 92 | 0   |
| 174 | BC_SIMPL | interior                  | 18.8466   | 83 | 92 | 60 | 19.1566   | 0   | 92 | 0   |
| 185 | BC_SIMPL | highly_ventilated_cavity  | 0.3459    | 60 | 7  | 0  | 2.9110    | 56  | 7  | 61  |
| 200 | EQUIMAT  | cavity_non-vent_physical  | 15.5849   | 62 | 53 | 57 | 18.3435   | 0   | 85 | 0   |

### Boundary Condition Flow Data

| Col | Type     | Name     | ta [°C] | Flow in [W] | Flow out [W] |
|-----|----------|----------|---------|-------------|--------------|
| 174 | BC_SIMPL | interior | —       | 2.6668      | 0.0000       |

| Col | Type     | Name                     | ta [°C] | Flow in [W] | Flow out [W] |
|-----|----------|--------------------------|---------|-------------|--------------|
| 185 | BC_SIMPL | highly_ventilated_cavity | -       | 0.0000      | 2.6668       |

✓ **Note:** All calculations have been generated and verified for **Façade Creations**, ensuring precise thermal performance analysis for façade materials

## Single Bracket – Centre Area Calculation

- **Purpose:** Deduction to determine X value of the bracket
- **Wall Section:** 600 mm × 600 mm
- **Heat Flow, Q:** 1.241 W

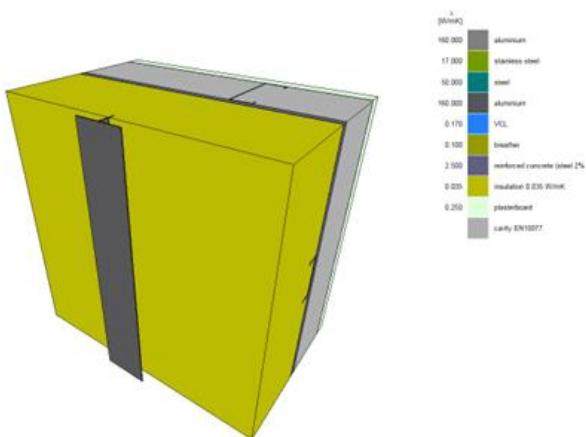



Figure 27 – External Material Thermal Conductivity Diagram

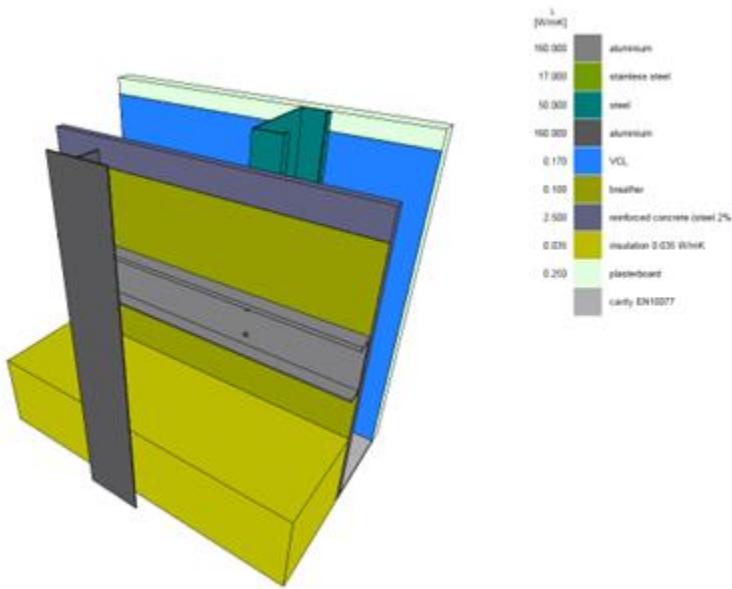



Figure 28 – Thermal Conductivity Diagram

---

### Temperature Gradient Diagrams – Façade Creations

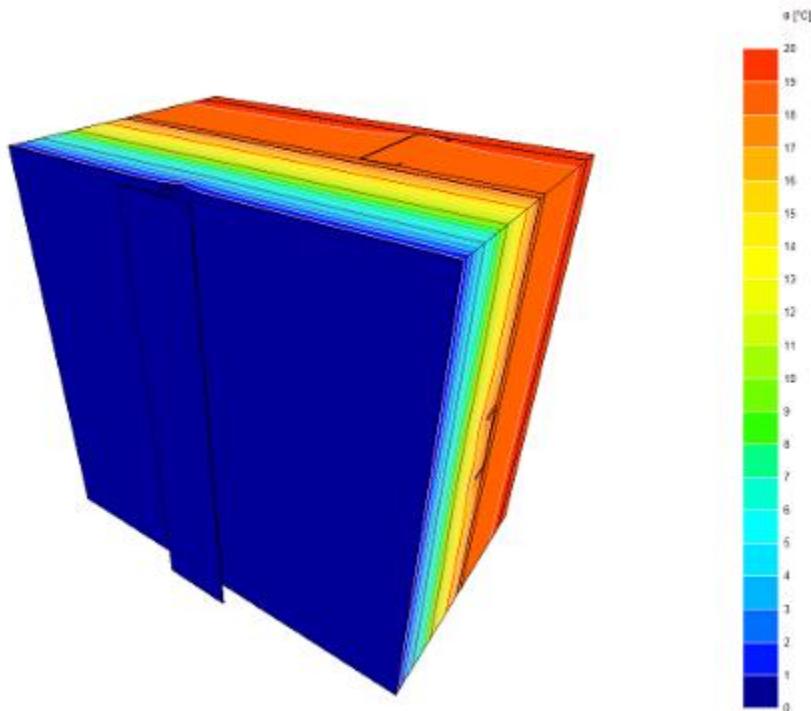



Figure 29 – External Temperature Gradient Diagram – Façade Creations

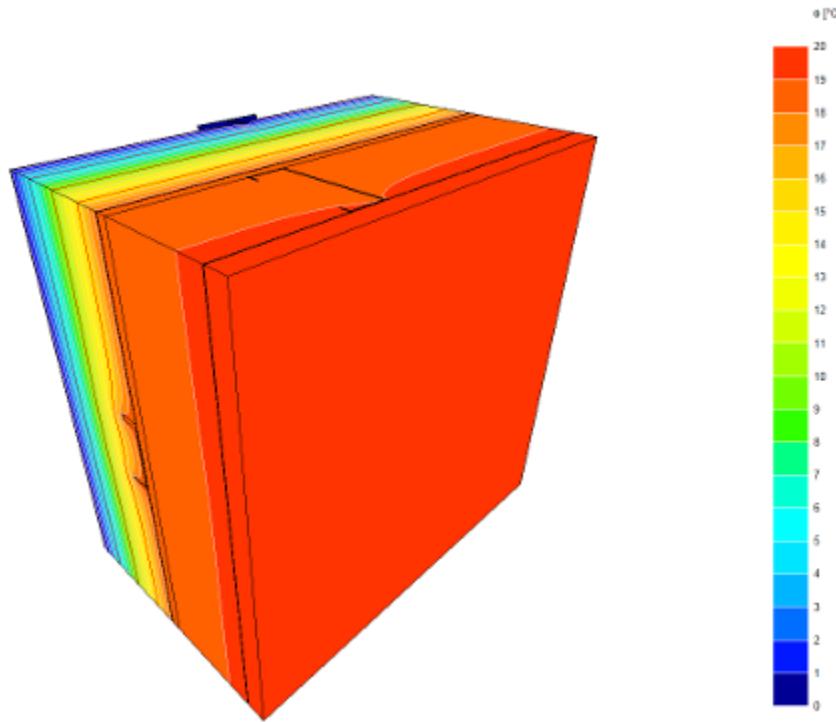



Figure 30 – Internal Temperature Gradient Diagram – Façade Creations

### TRISCO – Input Data

**TRISCO Data File:** 04 res no bracket.trc

#### Colours / Materials

| Col | Type     | Subtype | Phys. flow | Geom. flow | Name                      | eps1 / eps2 |
|-----|----------|---------|------------|------------|---------------------------|-------------|
| 8   | MATERIAL |         |            |            | Aluminium                 | – / –       |
| 11  | MATERIAL |         |            |            | stainless_steel           | – / –       |
| 13  | MATERIAL |         |            |            | Steel                     | – / –       |
| 24  | MATERIAL |         |            |            | Aluminium                 | – / –       |
| 42  | MATERIAL |         |            |            | VCL                       | – / –       |
| 43  | MATERIAL |         |            |            | Breather                  | – / –       |
| 136 | MATERIAL |         |            |            | reinforced_concrete_steel | – / –       |

| Col | Type     | Subtype  | Phys. flow | Geom. flow | Name                     | eps1 / eps2 |
|-----|----------|----------|------------|------------|--------------------------|-------------|
| 151 | MATERIAL |          |            |            | insulation_0.035_W/mK    | – / –       |
| 161 | MATERIAL |          |            |            | Plasterboard             | – / –       |
| 174 | BC_SIMPL | HI_NORML | HOR        |            | Interior                 | – / –       |
| 185 | BC_SIMPL | NIHIL    |            |            | highly_ventilated_cavity | – / –       |
| 200 | EQUIMAT  | CAVITY   | HOR        | Yx         | cavity_non-vent_physical | 0.90 / 0.90 |

### Material Properties

| Col | $\lambda$ [W/mK] | $\epsilon$ [-] | t [°C] | h [W/m²K] | q [W/m²] | ta [°C] | hc [W/m²K] | Pc [W/m] | tr [°C] | Standard |
|-----|------------------|----------------|--------|-----------|----------|---------|------------|----------|---------|----------|
| 8   | 160.000          | –              | –      | –         | –        | –       | –          | –        | –       | –        |
| 11  | 17.000           | –              | –      | –         | –        | –       | –          | –        | –       | –        |
| 13  | 50.000           | –              | –      | –         | –        | –       | –          | –        | –       | –        |
| 24  | 160.000          | –              | –      | –         | –        | –       | –          | –        | –       | –        |
| 42  | 0.170            | –              | –      | –         | –        | –       | –          | –        | –       | –        |
| 43  | 0.100            | –              | –      | –         | –        | –       | –          | –        | –       | –        |
| 136 | 2.500            | –              | –      | –         | –        | –       | –          | –        | –       | –        |
| 151 | 0.035            | –              | –      | –         | –        | –       | –          | –        | –       | –        |
| 161 | 0.250            | –              | –      | –         | –        | –       | –          | –        | –       | –        |
| 174 | –                | –              | 20.0   | 7.70      | 0        | –       | –          | –        | –       | EN10077  |
| 185 | –                | –              | 0.0    | 7.70      | 0        | –       | –          | –        | –       | NIHIL    |
| 200 | 0.787            | –              | –      | –         | –        | –       | –          | –        | –       | EN10077  |

### Calculation Parameters

- **Iteration cycles:** 5
- **Maximum iterations per cycle:** 10,000
- **Maximum temperature difference within each cycle:** 0.0001 °C
- **Maximum temperature difference between cycles:** 0.001 °C

- **Heat flow divergence (total object):** 0.001 %
- **Heat flow divergence (worst node):** 1 %
- **Automatic recalculation of thermal values:** Enabled
- **Default temperature difference across airspace:** 10 °C

## TRISCO – Calculation Results

**TRISCO Data File:** 04 res no bracket.trc

- **Number of nodes:** 1,339,316
- **Heat flow divergence (total object):** 0.000298259 %
- **Heat flow divergence (worst node):** 0.945368 %
- **Total heat flow, Q:** 1.241 W
- **Interior temperature, ti:** 20.0000 °C
- **Exterior temperature, te:** 0.0000 °C
- **Area, A1:** 0.36 m<sup>2</sup>
- **Coordinate bounds:** Xmin=0, Xmax=126; Ymin=34, Ymax=34; Zmin=0, Zmax=121

### Material Temperature Data

| Col | Type     | Name                      | tmin [°C] | X  | Y  | Z  | tmax [°C] | X   | Y  | Z   |
|-----|----------|---------------------------|-----------|----|----|----|-----------|-----|----|-----|
| 8   | MATERIAL | aluminium                 | 18.3816   | 0  | 40 | 50 | 18.4432   | 86  | 48 | 56  |
| 11  | MATERIAL | stainless_steel           | 18.4343   | 85 | 46 | 65 | 18.5939   | 85  | 58 | 55  |
| 13  | MATERIAL | steel                     | 18.5406   | 92 | 53 | 61 | 19.0254   | 92  | 85 | 121 |
| 24  | MATERIAL | aluminium                 | 0.0633    | 46 | 1  | 0  | 0.0819    | 58  | 10 | 61  |
| 42  | MATERIAL | VCL                       | 18.9739   | 80 | 85 | 60 | 19.1726   | 15  | 86 | 121 |
| 43  | MATERIAL | breather                  | 18.3917   | 0  | 48 | 50 | 18.6164   | 83  | 49 | 121 |
| 136 | MATERIAL | reinforced_concrete_steel | 18.4411   | 0  | 49 | 61 | 18.6504   | 81  | 53 | 121 |
| 151 | MATERIAL | insulation_0.035_W/mK     | 0.0755    | 58 | 7  | 0  | 18.5825   | 83  | 48 | 121 |
| 161 | MATERIAL | plasterboard              | 19.0037   | 81 | 86 | 60 | 19.5699   | 11  | 92 | 121 |
| 174 | BC_SIMPL | interior                  | 19.4963   | 84 | 92 | 60 | 19.5699   | 11  | 92 | 121 |
| 185 | BC_SIMPL | highly_ventilated_cavity  | 0.0633    | 46 | 1  | 0  | 0.4597    | 126 | 7  | 61  |
| 200 | EQUIMAT  | cavity_non-vent_physical  | 18.4661   | 0  | 53 | 60 | 19.1531   | 15  | 85 | 121 |

### Boundary Condition Flow Data

| Col | Type     | Name                     | ta [°C] | Flow in [W] | Flow out [W] |
|-----|----------|--------------------------|---------|-------------|--------------|
| 174 | BC_SIMPL | interior                 | —       | 1.2405      | 0.0000       |
| 185 | BC_SIMPL | highly_ventilated_cavity | —       | 0.0000      | 1.2405       |

✓ **Note:** All results are specific to **Façade Creations**, providing precise thermal analysis for wall and cavity components.

---

## Vertical Rail $\Psi$ Value – Façade Creations

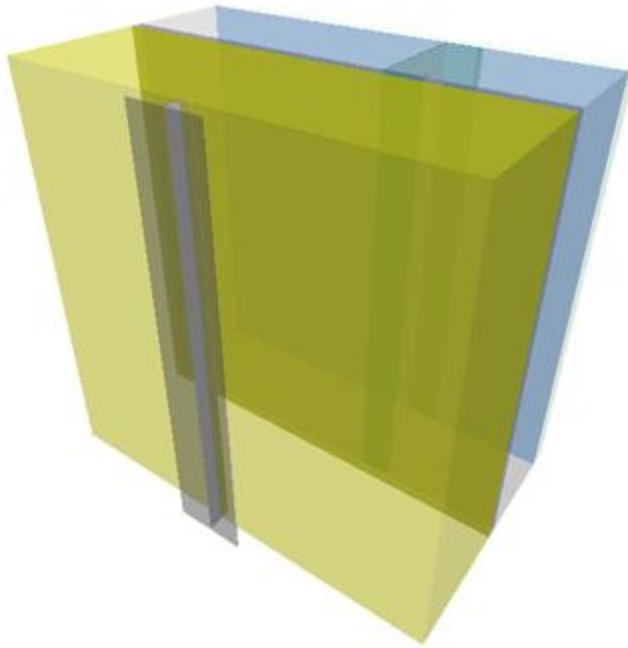
- Material Thermal Conductivity Diagram
- Temperature Gradient Diagrams
- Façade Creations – Analysis Input Data Sheet
- Façade Creations – Analysis Output Data Sheet

Finite element analysis was conducted using **TRISCO version 15.0.01**.

### Summary:

A sample area of 600 mm × 600 mm was analyzed. The  **$\Psi$  value of the vertical rail** was determined to be **0.000 W/mK**, with any additional  $\Psi$  value considered negligible.

### $\Psi$ Value Calculation


**Condition Q [W] ΔT [K] l [m] Q/ΔT [W/K]**

With rail 1.208 20 0.600 0.060

Without rail 1.202 20 0.600 0.060

### $\Psi$ Value:

$$\Psi = l(Q_{\text{rail}}/\Delta T) - (Q_{\text{no rail}}/\Delta T) = 0.000 \text{ W/mK}$$



### Material Thermal Conductivity Diagram – Façade Creations

- **Wall Section:** 600 mm × 600 mm
- **Heat Flow, Q:** 1.208 W

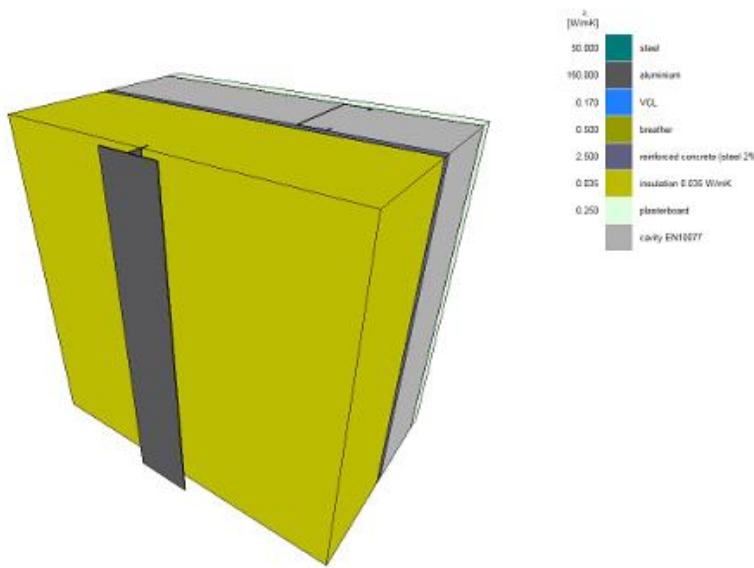



Figure 31 – External Material Thermal Conductivity Diagram – Façade Creations

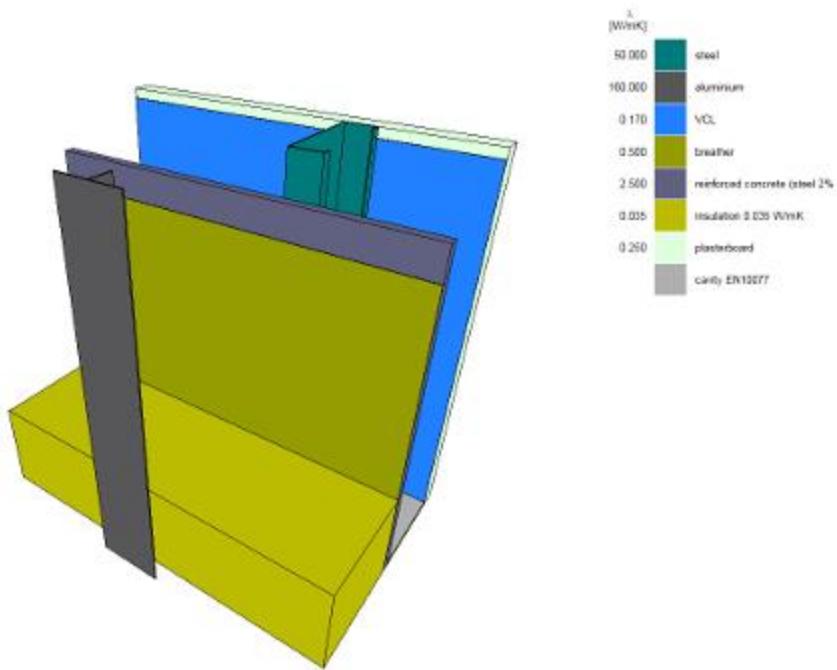



Figure 32 – Thermal Conductivity Diagram (Materials Cut Back for Clarity) – Façade Creations

### Temperature Gradient Diagrams – Façade Creations



Figure 33 – External Temperature Gradient Diagram – Façade Creations

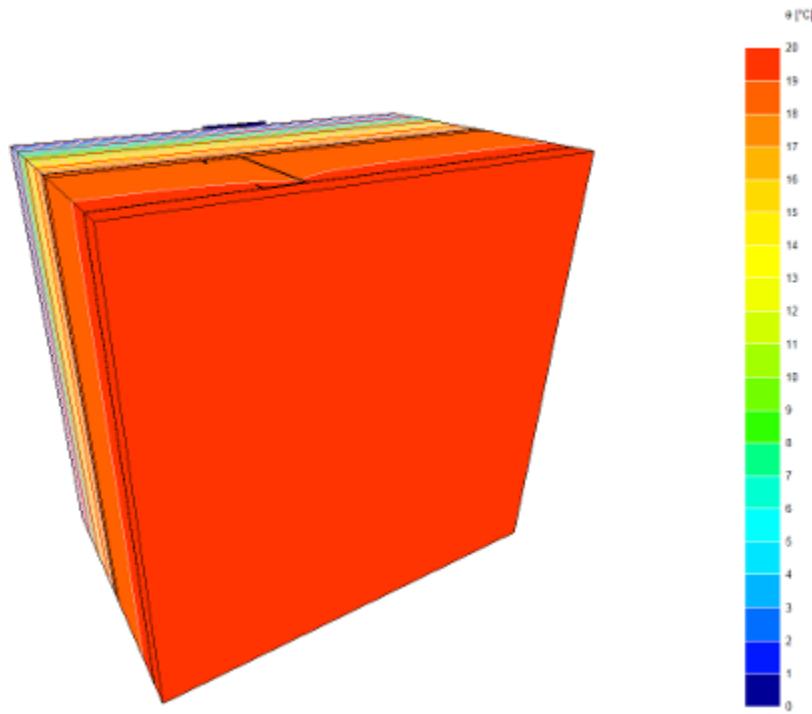



Figure 34 – Internal Temperature Gradient Diagram – Façade Creations

### TRISCO – Input Data

**TRISCO Data File:** 05 vert.trc

#### Colours / Materials

| Col | Type     | Subtype  | Phys. flow | Geom. flow | Name                  | eps1 / eps2 |
|-----|----------|----------|------------|------------|-----------------------|-------------|
| 13  | MATERIAL |          |            |            | steel                 | – / –       |
| 24  | MATERIAL |          |            |            | aluminium             | – / –       |
| 42  | MATERIAL |          |            |            | VCL                   | – / –       |
| 97  | MATERIAL |          |            |            | y_wall                | – / –       |
| 151 | MATERIAL |          |            |            | insulation_0.035_W/mK | – / –       |
| 161 | MATERIAL |          |            |            | gyproc_fireline       | – / –       |
| 174 | BC_SIMPL | HI_NORML | HOR        |            | interior              | – / –       |

| Col | Type     | Subtype | Phys. flow | Geom. flow | Name                     | eps1 / eps2 |
|-----|----------|---------|------------|------------|--------------------------|-------------|
| 185 | BC_SIMPL | NIHIL   |            |            | highly_ventilated_cavity | — / —       |

## Material Properties

| Col | $\lambda$ [W/mK] | $\epsilon$ [-] | t [°C] | h [W/m <sup>2</sup> K] | q [W/m <sup>2</sup> ] | ta [°C] | hc [W/m <sup>2</sup> K] | Pc [W/m] | tr [°C] | Standard |
|-----|------------------|----------------|--------|------------------------|-----------------------|---------|-------------------------|----------|---------|----------|
| 13  | 50.000           | —              | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 24  | 160.000          | —              | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 42  | 0.170            | —              | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 97  | 0.120            | —              | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 151 | 0.035            | —              | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 161 | 0.240            | —              | —      | —                      | —                     | —       | —                       | —        | —       | —        |
| 174 | —                | —              | 20.0   | 7.70                   | 0                     | —       | —                       | —        | —       | EN10077  |
| 185 | —                | —              | 0.0    | 7.70                   | 0                     | —       | —                       | —        | —       | NIHIL    |

## Calculation Parameters

- **Iteration cycles:** 5
- **Maximum iterations per cycle:** 10,000
- **Maximum temperature difference within each cycle:** 0.0001 °C
- **Maximum temperature difference between cycles:** 0.001 °C
- **Heat flow divergence (total object):** 0.001 %
- **Heat flow divergence (worst node):** 1 %
- **Automatic recalculation of thermal values:** Enabled
- **Default temperature difference across airspace:** 10 °C

## TRISCO – Calculation Results

### TRISCO Data File: 05 vert.trc

- **Number of nodes:** 1,361,272
- **Heat flow divergence (total object):** 0.000512238 %
- **Heat flow divergence (worst node):** 0.987327 %
- **Total heat flow, Q:** 1.208 W
- **Interior temperature, ti:** 20.0000 °C
- **Exterior temperature, te:** 0.0000 °C

- **Area, A1:** 0.36 m<sup>2</sup>
- **Coordinate bounds:** Xmin=0, Xmax=126; Ymin=34, Ymax=34; Zmin=0, Zmax=123

#### Material Temperature Data

| Col | Type     | Name                      | tmin [°C] | X  | Y  | Z   | tmax [°C] | X   | Y  | Z  |
|-----|----------|---------------------------|-----------|----|----|-----|-----------|-----|----|----|
| 13  | MATERIAL | Steel                     | 18.6509   | 92 | 53 | 113 | 19.0509   | 92  | 85 | 0  |
| 24  | MATERIAL | Aluminium                 | 0.0621    | 46 | 1  | 0   | 0.0787    | 58  | 10 | 97 |
| 42  | MATERIAL | VCL                       | 19.0178   | 80 | 85 | 0   | 19.1908   | 126 | 86 | 0  |
| 43  | MATERIAL | Breather                  | 18.5071   | 0  | 48 | 114 | 18.6443   | 83  | 49 | 0  |
| 136 | MATERIAL | reinforced_concrete_steel | 18.5138   | 0  | 49 | 96  | 18.6787   | 81  | 53 | 0  |
| 151 | MATERIAL | insulation_0.035_W/mK     | 0.0742    | 58 | 7  | 0   | 18.6374   | 83  | 48 | 0  |
| 161 | MATERIAL | Plasterboard              | 19.0462   | 81 | 86 | 0   | 19.5791   | 126 | 92 | 0  |
| 174 | BC_SIMPL | Interior                  | 19.5173   | 84 | 92 | 0   | 19.5791   | 126 | 92 | 0  |
| 185 | BC_SIMPL | highly_ventilated_cavity  | 0.0621    | 46 | 1  | 0   | 0.4334    | 126 | 7  | 68 |
| 200 | EQUIMAT  | cavity_non-vent_physical  | 18.5337   | 0  | 53 | 101 | 19.1718   | 126 | 85 | 24 |

#### Boundary Condition Flow Data

| Col | Type     | Name                     | ta [°C] | Flow in [W] | Flow out [W] |
|-----|----------|--------------------------|---------|-------------|--------------|
| 174 | BC_SIMPL | Interior                 | —       | 1.2075      | 0.0000       |
| 185 | BC_SIMPL | highly_ventilated_cavity | —       | 0.0000      | 1.2076       |

✓ **Note:** All results correspond to **Façade Creations**, providing detailed thermal analysis for vertical rail and cavity components.

## Double Bracket Location – Horizontal Rail $\Psi$ Value – Façade Creations

- Material Thermal Conductivity Diagram – Façade Creations
- Temperature Gradient Diagrams – Façade Creations

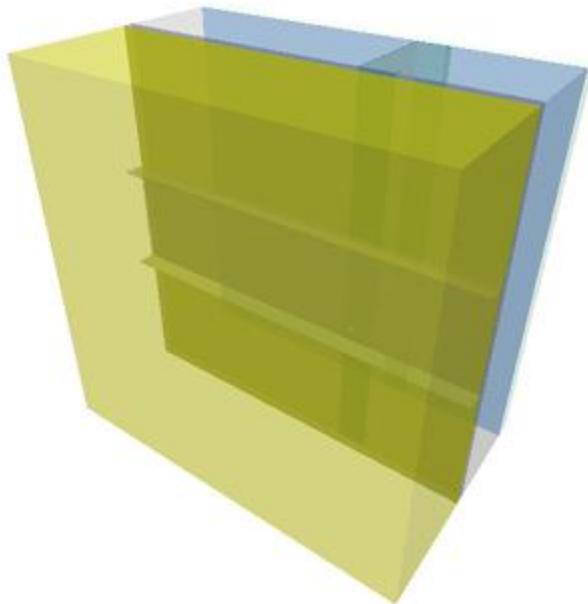
- Thermal Analysis Input Data – Façade Creations
- Thermal Analysis Output Data – Façade Creations

Thermal analysis was conducted using **TRISCO version 15.0.01**.

### **Summary:**

A sample area of 600 mm × 600 mm was analyzed. The **Ψ value of the horizontal rail** for Façade Creations was determined to be **0.003 W/mK**.

## **Ψ Value Calculation – Façade Creations**


**Condition Q [W] ΔT [K] l [m] Q/ΔT [W/K]**

With rail 1.238 20 0.600 0.062

Without rail 1.202 20 0.600 0.060

### **Ψ Value – Façade Creations:**

$$\Psi = l(Q_{\text{rail}}/\Delta T) - (Q_{\text{no rail}}/\Delta T) = 0.003 \text{ W/mK}$$



### **Material Thermal Conductivity Diagram – Façade Creations**

- **Wall Section:** 600 mm × 600 mm
- **Heat Flow, Q:** 1.238 W

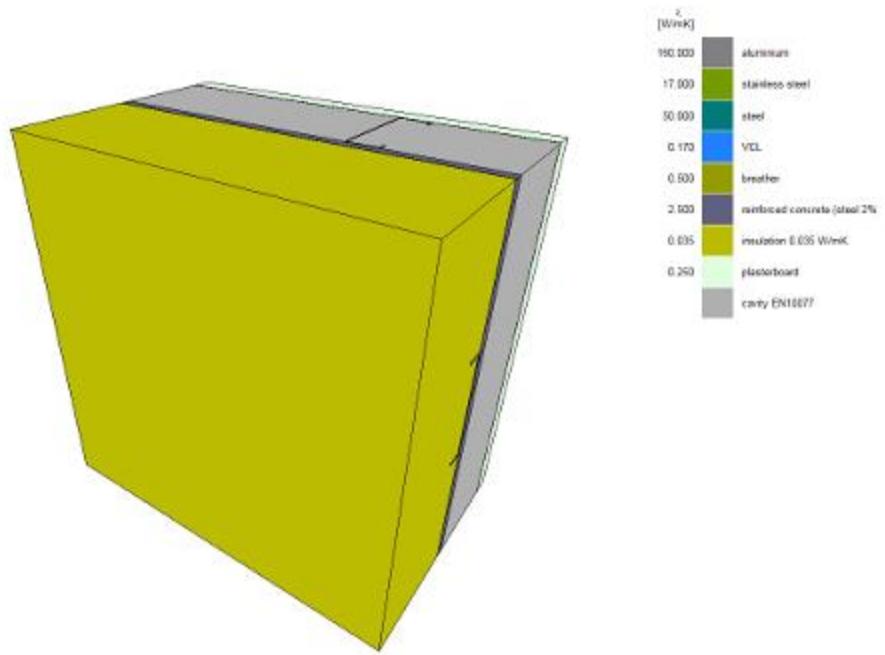



Figure 41 – External Material Thermal Conductivity Diagram – Façade Creations

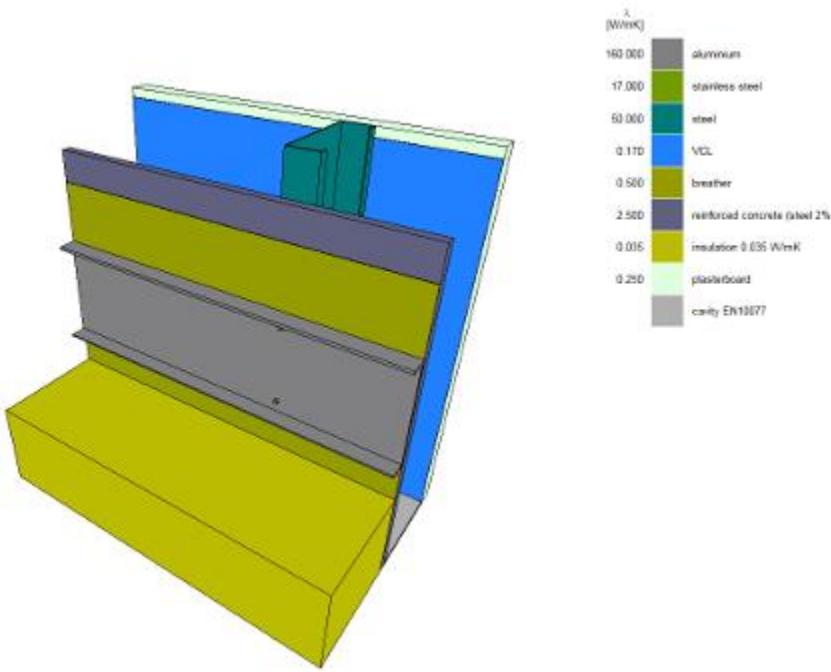



Figure 42 – Thermal Conductivity Diagram (Materials Cut Back for Clarity) – Façade Creations

### Temperature Gradient Diagrams – Façade Creations

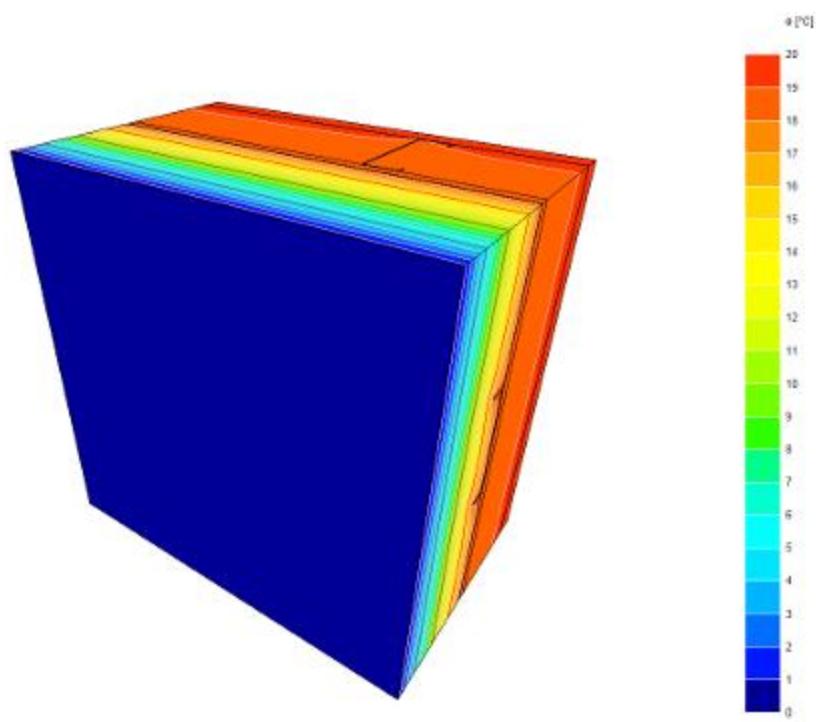



Figure 43 – External Temperature Gradient Diagram – Façade Creations

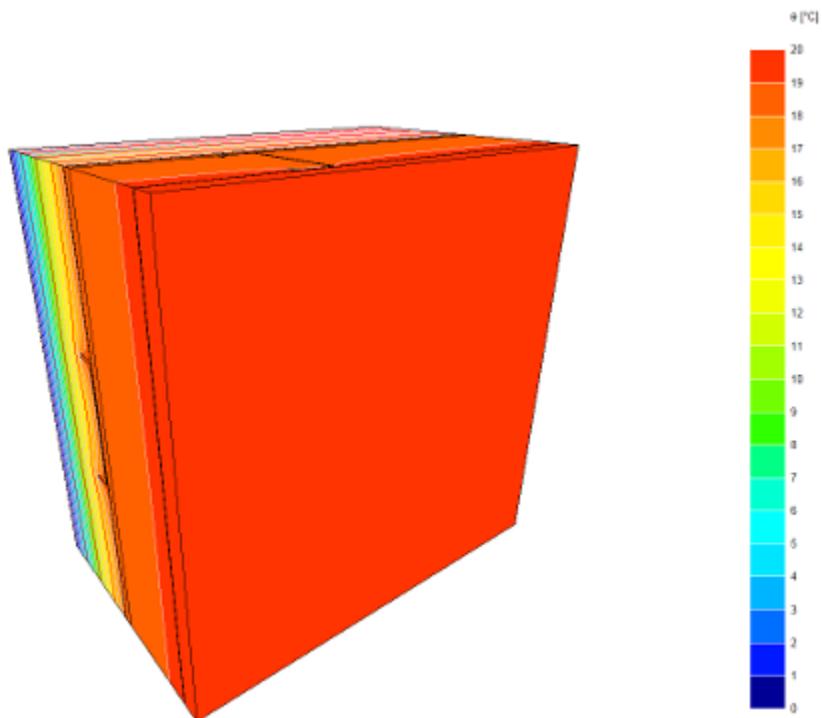



Figure 44 – Internal Temperature Gradient Diagram – Façade Creations

## TRISCO – Input Data

## TRISCO Data File: 06 load horiz.

## Colours / Materials

| Col | Type     | Subtype  | Phys. flow | Geom. flow | Name                      | eps1 / eps2 |
|-----|----------|----------|------------|------------|---------------------------|-------------|
| 8   | MATERIAL |          |            |            | aluminium                 | - / -       |
| 11  | MATERIAL |          |            |            | stainless_steel           | - / -       |
| 13  | MATERIAL |          |            |            | steel                     | - / -       |
| 42  | MATERIAL |          |            |            | VCL                       | - / -       |
| 43  | MATERIAL |          |            |            | breather                  | - / -       |
| 136 | MATERIAL |          |            |            | reinforced_concrete_steel | - / -       |
| 151 | MATERIAL |          |            |            | insulation_0.035_W/mK     | - / -       |
| 161 | MATERIAL |          |            |            | plasterboard              | - / -       |
| 174 | BC_SIMPL | HI_NORML | HOR        |            | interior                  | - / -       |
| 185 | BC_SIMPL | NIHIL    |            |            | highly_ventilated_cavity  | - / -       |
| 200 | EQUIMAT  | CAVITY   | HOR        | Yx         | cavity_non-vent_physical  | 0.90 / 0.90 |

## Material Properties

| Col | $\lambda$ [W/mK] | $\epsilon$ [-] | t [°C] | h [W/m²K] | q [W/m²] | ta [°C] | hc [W/m²K] | Pc [W/m] | tr [°C] | Standard |
|-----|------------------|----------------|--------|-----------|----------|---------|------------|----------|---------|----------|
| 161 | 0.250            | —              | —      | —         | —        | —       | —          | —        | —       | —        |
| 174 | —                | —              | 20.0   | 7.70      | 0        | —       | —          | —        | —       | EN10077  |
| 185 | —                | —              | 0.0    | 7.70      | 0        | —       | —          | —        | —       | NIHIL    |
| 200 | 0.786            | —              | —      | —         | —        | —       | —          | —        | —       | EN10077  |

## Calculation Parameters

- Iteration cycles:** 5
- Maximum iterations per cycle:** 10,000
- Maximum temperature difference within each cycle:** 0.0001 °C
- Maximum temperature difference between cycles:** 0.001 °C
- Heat flow divergence (total object):** 0.001 %
- Heat flow divergence (worst node):** 1 %
- Automatic recalculation of thermal values:** Enabled
- Default temperature difference across airspace:** 10 °C

## TRISCO – Calculation Results

### TRISCO Data File: 06 load horiz.trc

- Number of nodes:** 1,354,328
- Heat flow divergence (total object):** 0.000974509 %
- Heat flow divergence (worst node):** 0.524848 %
- Total heat flow, Q:** 1.238 W
- Interior temperature, ti:** 20.0000 °C
- Exterior temperature, te:** 0.0000 °C
- Area, A1:** 0.36 m<sup>2</sup>
- Coordinate bounds:** Xmin=0, Xmax=126; Ymin=34, Ymax=34; Zmin=0, Zmax=123

## Material Temperature Data – Façade Creations

| Col | Type     | Name            | tmin [°C] | X  | Y  | Z  | tmax [°C] | X  | Y  | Z   |
|-----|----------|-----------------|-----------|----|----|----|-----------|----|----|-----|
| 8   | MATERIAL | aluminium       | 18.4441   | 0  | 40 | 43 | 18.5055   | 85 | 48 | 60  |
| 11  | MATERIAL | stainless_steel | 18.4952   | 86 | 46 | 74 | 18.6026   | 85 | 58 | 48  |
| 13  | MATERIAL | steel           | 18.5480   | 92 | 53 | 63 | 19.0254   | 92 | 85 | 123 |
| 42  | MATERIAL | VCL             | 18.9723   | 80 | 85 | 62 | 19.1765   | 0  | 86 | 123 |

| Col | Type     | Name                      | tmin [°C] | X  | Y  | Z  | tmax [°C] | X  | Y  | Z   |
|-----|----------|---------------------------|-----------|----|----|----|-----------|----|----|-----|
| 43  | MATERIAL | breather                  | 18.4546   | 0  | 48 | 43 | 18.6174   | 83 | 49 | 123 |
| 136 | MATERIAL | reinforced_concrete_steel | 18.4671   | 0  | 49 | 76 | 18.6513   | 81 | 53 | 123 |
| 151 | MATERIAL | insulation_0.035_W/mK     | 0.4362    | 0  | 7  | 0  | 18.6107   | 83 | 48 | 123 |
| 161 | MATERIAL | plasterboard              | 19.0022   | 81 | 86 | 62 | 19.5719   | 0  | 92 | 123 |
| 174 | BC_SIMPL | interior                  | 19.4956   | 84 | 92 | 62 | 19.5719   | 0  | 92 | 123 |
| 185 | BC_SIMPL | highly_ventilated_cavity  | 0.4362    | 0  | 7  | 0  | 0.4559    | 89 | 7  | 69  |
| 200 | EQUIMAT  | cavity_non-vent_physical  | 18.4904   | 0  | 53 | 53 | 19.1571   | 0  | 85 | 123 |

#### Boundary Condition Flow Data – Façade Creations

| Col | Type     | Name                     | ta [°C] | Flow in [W] | Flow out [W] |
|-----|----------|--------------------------|---------|-------------|--------------|
| 174 | BC_SIMPL | interior                 | –       | 1.2381      | 0.0000       |
| 185 | BC_SIMPL | highly_ventilated_cavity | –       | 0.0000      | 1.2381       |

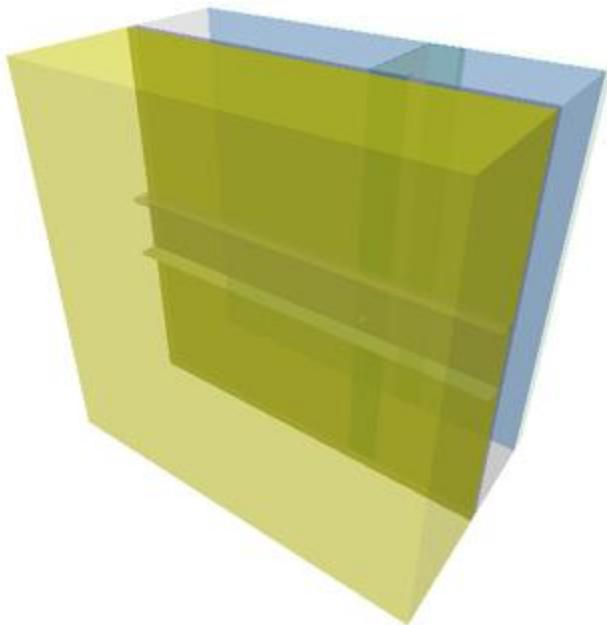
✓ Note: These results correspond to **Façade Creations**, providing detailed thermal performance analysis for the horizontal rail section.

## Single Bracket Location – Horizontal Rail $\Psi$ Value – Façade Creations

- Material Thermal Conductivity Diagram – Façade Creations
- Temperature Gradient Diagrams – Façade Creations
- Thermal Analysis Input Data – Façade Creations
- Thermal Analysis Output Data – Façade Creations

Thermal analysis was conducted using **TRISCO version 15.0.01**.

#### Summary:


A sample area of 600 mm × 600 mm was analyzed. The  **$\Psi$  value of the horizontal rail for Façade Creations** was determined to be **0.003 W/mK**.

### $\Psi$ Value Calculation – Façade Creations

| Condition    | Q [W] | $\Delta T$ [K] | l [m] | Q/ $\Delta T$ [W/K] |
|--------------|-------|----------------|-------|---------------------|
| With rail    | 1.234 | 20             | 0.600 | 0.062               |
| Without rail | 1.202 | 20             | 0.600 | 0.060               |

### $\Psi$ Value – Façade Creations:

$$\Psi = l(Q_{\text{rail}}/\Delta T) - (Q_{\text{no rail}}/\Delta T) = 0.003 \text{ W/mK}$$



### Material Thermal Conductivity Diagram – Façade Creations

- **Wall Section:** 600 mm × 600 mm
- **Heat Flow, Q:** 1.234 W

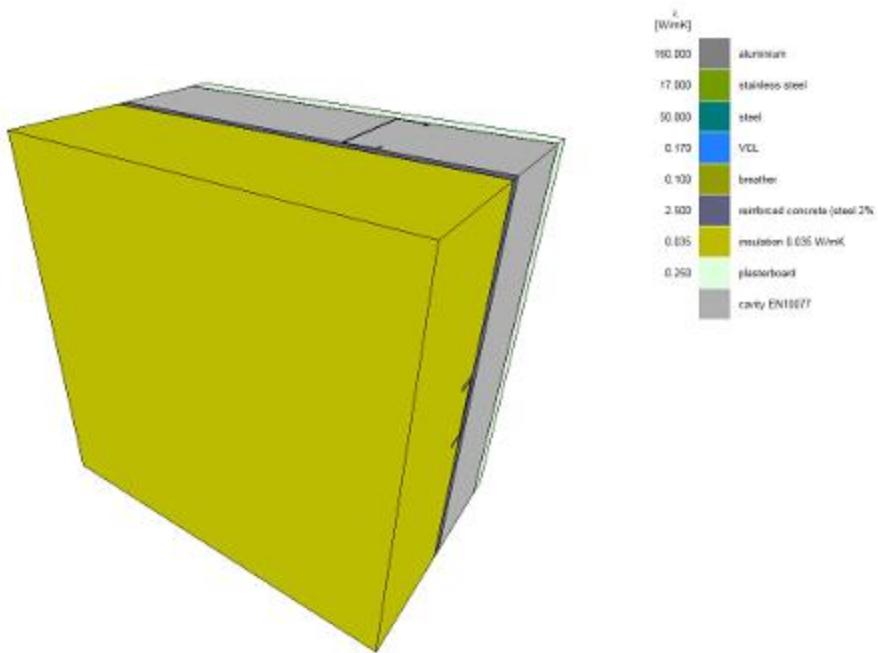



Figure 51 – External Material Thermal Conductivity Diagram – Façade Creations

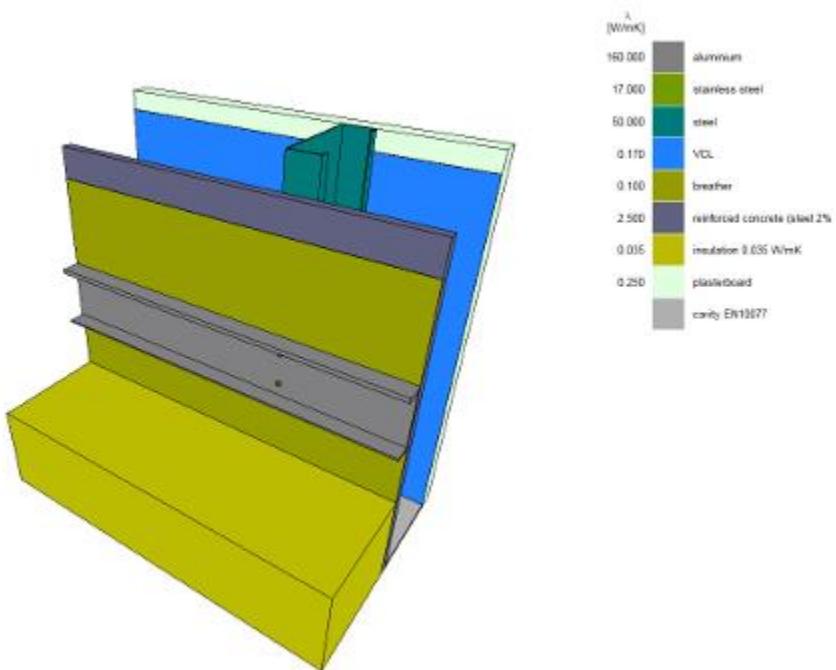



Figure 52 – Thermal Conductivity Diagram (Materials Cut Back for Clarity) – Façade Creations

## Temperature Gradient Diagrams – Façade Creations

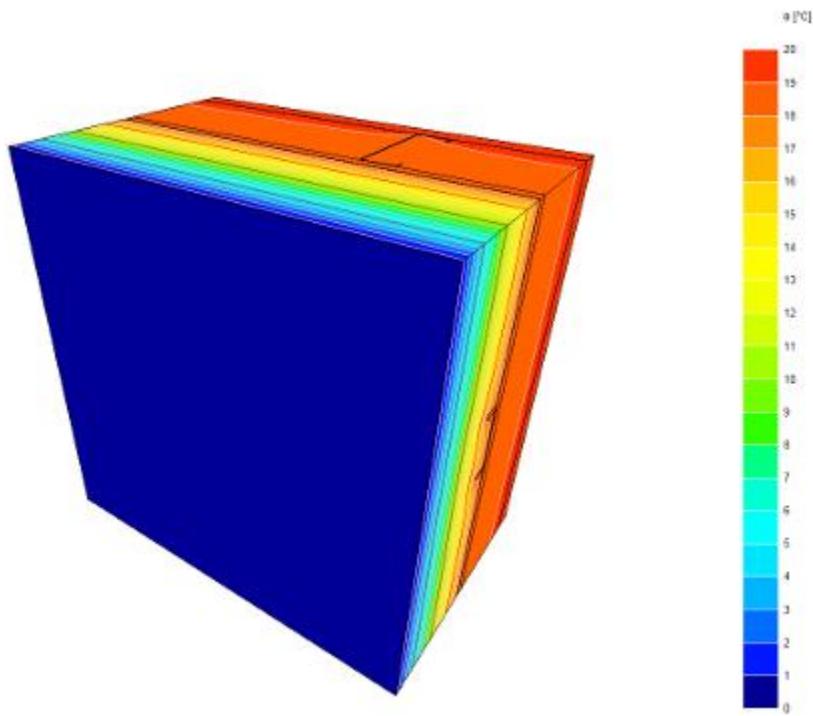



Figure 53 – External Temperature Gradient Diagram – Façade Creations

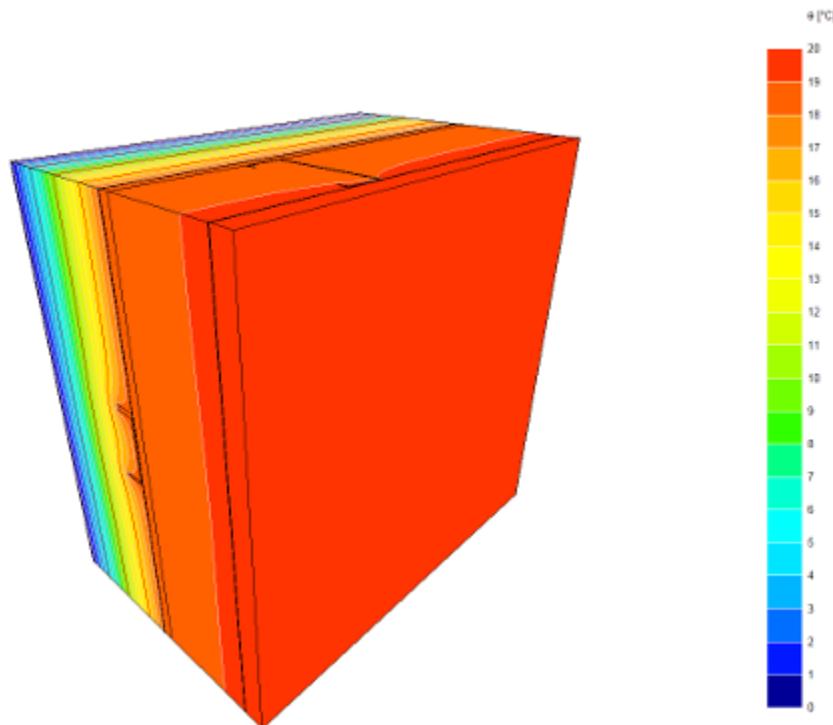



Figure 54 – Internal Temperature Gradient Diagram – Façade Creations

## TRISCO – Input Data

## TRISCO Data File: 07 res horiz.trc

## Colours / Materials

| Col | Type     | Subtype  | Phys. flow | Geom. flow | Name                      | eps1 / eps2 |
|-----|----------|----------|------------|------------|---------------------------|-------------|
| 8   | MATERIAL |          |            |            | aluminium                 | - / -       |
| 11  | MATERIAL |          |            |            | stainless_steel           | - / -       |
| 13  | MATERIAL |          |            |            | steel                     | - / -       |
| 42  | MATERIAL |          |            |            | VCL                       | - / -       |
| 43  | MATERIAL |          |            |            | breather                  | - / -       |
| 136 | MATERIAL |          |            |            | reinforced_concrete_steel | - / -       |
| 151 | MATERIAL |          |            |            | insulation_0.035_W/mK     | - / -       |
| 161 | MATERIAL |          |            |            | plasterboard              | - / -       |
| 174 | BC_SIMPL | HI_NORML | HOR        |            | interior                  | - / -       |
| 185 | BC_SIMPL | NIHIL    |            |            | highly_ventilated_cavity  | - / -       |
| 200 | EQUIMAT  | CAVITY   | HOR        | Yx         | cavity_non-vent_physical  | 0.90 / 0.90 |

## Material Properties

| Col | $\lambda$ [W/mK] | $\varepsilon$ [-] | t [°C] | h [W/m²K] | q [W/m²] | ta [°C] | hc [W/m²K] | Pc [W/m] | tr [°C] | Standard |
|-----|------------------|-------------------|--------|-----------|----------|---------|------------|----------|---------|----------|
| 151 | 0.035            | —                 | —      | —         | —        | —       | —          | —        | —       | —        |
| 161 | 0.250            | —                 | —      | —         | —        | —       | —          | —        | —       | —        |
| 174 | —                | —                 | 20.0   | 7.70      | 0        | —       | —          | —        | —       | EN10077  |
| 185 | —                | —                 | 0.0    | 7.70      | 0        | —       | —          | —        | —       | NIHIL    |
| 200 | 0.787            | —                 | —      | —         | —        | —       | —          | —        | —       | EN10077  |

### Calculation Parameters

- Iteration cycles:** 5
- Maximum iterations per cycle:** 10,000
- Maximum temperature difference within each cycle:** 0.0001 °C
- Maximum temperature difference between cycles:** 0.001 °C
- Heat flow divergence (total object):** 0.001 %
- Heat flow divergence (worst node):** 1 %
- Automatic recalculation of thermal values:** Enabled
- Default temperature difference across airspace:** 10 °C

### TRISCO – Calculation Results – Façade Creations

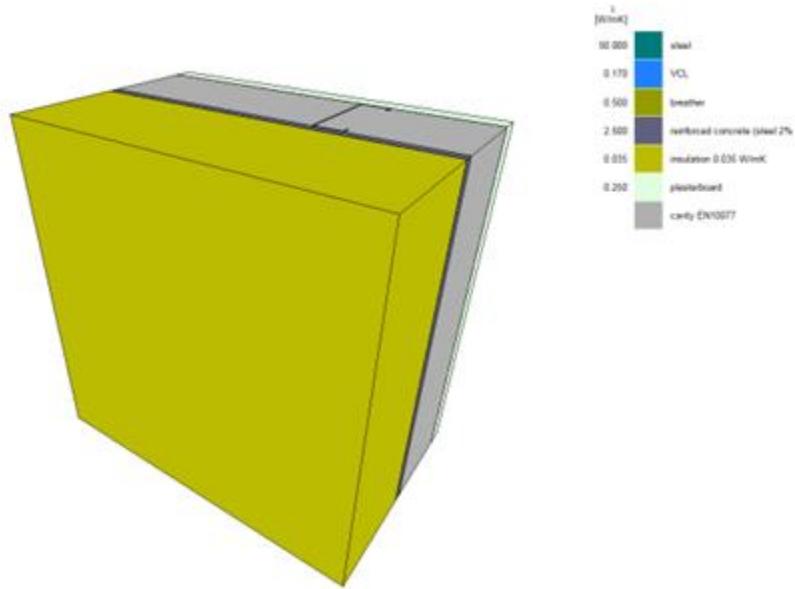
#### TRISCO Data File: 07 res horiz.trc

- Number of Nodes:** 1,332,484
- Heat Flow Divergence (Total Object):** 0.000999852 %
- Heat Flow Divergence (Worst Node):** 0.164467 %
- Q:** 1.234 W
- ti:** 20.0000 °C
- te:** 0.0000 °C
- Area, A1:** 0.36 m²
- Coordinates:** Xmin=0, Xmax=126; Ymin=34, Ymax=34; Zmin=0, Zmax=121

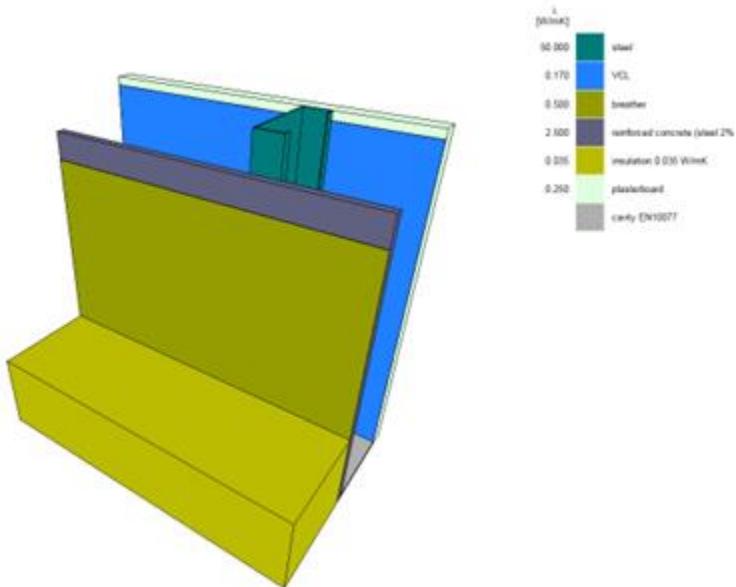
### Temperature Range per Material – Façade Creations

| Col | Type     | Name            | tmin [°C] | X  | Y  | Z  | tmax [°C] | X  | Y  | Z   |
|-----|----------|-----------------|-----------|----|----|----|-----------|----|----|-----|
| 8   | MATERIAL | aluminium       | 18.3892   | 0  | 40 | 50 | 18.4507   | 86 | 48 | 56  |
| 11  | MATERIAL | stainless_steel | 18.4418   | 85 | 46 | 65 | 18.6007   | 85 | 58 | 55  |
| 13  | MATERIAL | Steel           | 18.5476   | 92 | 53 | 61 | 19.0301   | 92 | 85 | 121 |

| Col | Type     | Name                      | tmin [°C] | X  | Y  | Z  | tmax [°C] | X  | Y  | Z   |
|-----|----------|---------------------------|-----------|----|----|----|-----------|----|----|-----|
| 42  | MATERIAL | VCL                       | 18.9789   | 80 | 85 | 60 | 19.1765   | 21 | 86 | 121 |
| 43  | MATERIAL | breather                  | 18.3993   | 0  | 48 | 50 | 18.6232   | 83 | 49 | 121 |
| 136 | MATERIAL | reinforced_concrete_steel | 18.4485   | 0  | 49 | 60 | 18.6571   | 81 | 53 | 121 |
| 151 | MATERIAL | insulation_0.035_W/mK     | 0.4342    | 0  | 7  | 0  | 18.5895   | 83 | 48 | 121 |
| 161 | MATERIAL | plasterboard              | 19.0085   | 81 | 86 | 60 | 19.5719   | 18 | 92 | 121 |
| 174 | BC_SIMPL | interior                  | 19.4987   | 84 | 92 | 60 | 19.5719   | 18 | 92 | 121 |
| 185 | BC_SIMPL | highly_ventilated_cavity  | 0.4342    | 0  | 7  | 0  | 0.4603    | 88 | 7  | 61  |
| 200 | EQUIMAT  | cavity_non-vent_physical  | 18.4734   | 0  | 53 | 60 | 19.1572   | 22 | 85 | 121 |

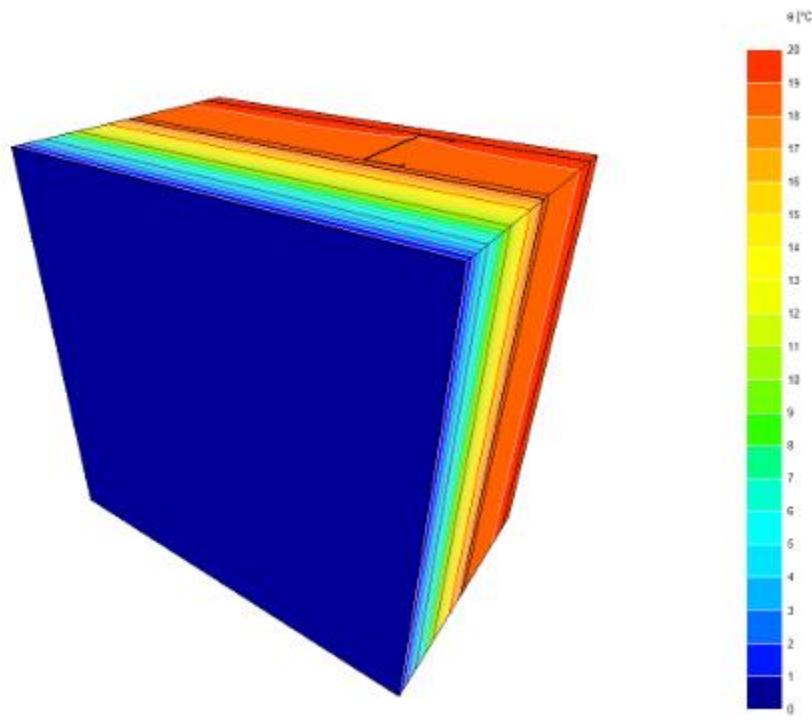

#### Heat Flow Summary – Façade Creations

| Col | Type     | Name                     | ta [°C] | Flow In [W] | Flow Out [W] |
|-----|----------|--------------------------|---------|-------------|--------------|
| 174 | BC_SIMPL | interior                 | –       | 1.2345      | 0.0000       |
| 185 | BC_SIMPL | highly_ventilated_cavity | –       | 0.0000      | 1.2345       |

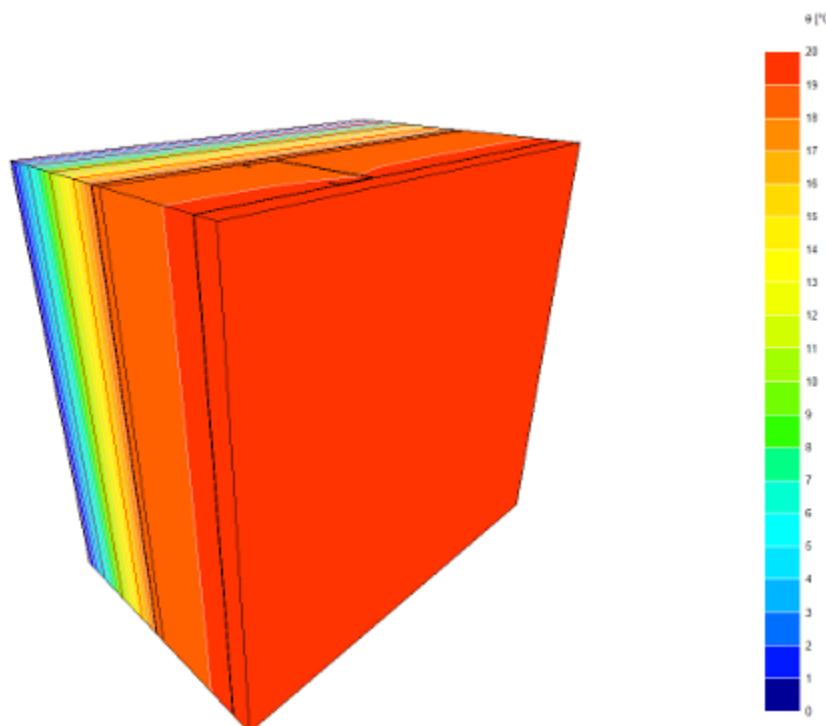

# Centre Area for Deduction to Ascertain $\Psi$ Value of Rails

## Material Thermal Conductivity Diagram

- **Wall Section:** 600 mm × 600 mm
- **Q:** 1.202 W




**Figure 61:** External material thermal conductivity diagram – Façade Creations




**Figure 62:** Thermal conductivity diagram – materials cut back for clarity – Façade Creations

## Temperature Gradient Diagrams – Façade Creations



**Figure 63:** External temperature gradient diagram – Façade Creations



**Figure 64:** Internal temperature gradient diagram – Façade Creations

**TRISCO – Input Data – Façade Creations**

**TRISCO Data File:** 08 cen.trc

**Material Colours**

| Col | Type     | Subtype  | Phys. Flow | Geom. Flow | Name                      | eps1 / eps2 |
|-----|----------|----------|------------|------------|---------------------------|-------------|
| 13  | MATERIAL | –        | –          | –          | steel                     | –           |
| 42  | MATERIAL | –        | –          | –          | VCL                       | –           |
| 43  | MATERIAL | –        | –          | –          | breather                  | –           |
| 136 | MATERIAL | –        | –          | –          | reinforced_concrete_steel | –           |
| 151 | MATERIAL | –        | –          | –          | insulation_0.035_W/mK     | –           |
| 161 | MATERIAL | –        | –          | –          | plasterboard              | –           |
| 174 | BC_SIMPL | HI_NORML | HOR        | –          | interior                  | –           |
| 185 | BC_SIMPL | NIHIL    | –          | –          | highly_ventilated_cavity  | –           |
| 200 | EQUIMAT  | CAVITY   | HOR Yx     | –          | cavity_non-vent_physical  | 0.90 / 0.90 |

**Thermal Properties**

| Col | Lambda [W/mK] | eps [-] | t [°C] | h [W/m <sup>2</sup> K] | q [W/m <sup>2</sup> ] | ta [°C] | hc [W/m <sup>2</sup> K] | Pc [W/m] | tr [°C] | Standard |
|-----|---------------|---------|--------|------------------------|-----------------------|---------|-------------------------|----------|---------|----------|
| 13  | 50.000        | –       | –      | –                      | –                     | –       | –                       | –        | –       | –        |
| 42  | 0.170         | –       | –      | –                      | –                     | –       | –                       | –        | –       | –        |
| 43  | 0.500         | –       | –      | –                      | –                     | –       | –                       | –        | –       | –        |
| 136 | 2.500         | –       | –      | –                      | –                     | –       | –                       | –        | –       | –        |
| 151 | 0.035         | –       | –      | –                      | –                     | –       | –                       | –        | –       | –        |
| 161 | 0.250         | –       | –      | –                      | –                     | –       | –                       | –        | –       | –        |
| 174 | –             | –       | 20.0   | 7.70                   | 0                     | –       | –                       | –        | –       | EN10077  |
| 185 | –             | –       | 0.0    | 7.70                   | 0                     | –       | –                       | –        | –       | NIHIL    |

| Col | Lambda<br>[W/mK] | eps [-] | t<br>[°C] | h<br>[W/m <sup>2</sup> K] | q<br>[W/m <sup>2</sup> ] | ta<br>[°C] | hc<br>[W/m <sup>2</sup> K] | Pc<br>[W/m] | tr<br>[°C] | Standard |
|-----|------------------|---------|-----------|---------------------------|--------------------------|------------|----------------------------|-------------|------------|----------|
| 200 | 0.785            | —       | —         | —                         | —                        | —          | —                          | —           | —          | EN10077  |

## Calculation Parameters

- Iteration cycles: 5
- Maximum iterations per cycle: 10,000
- Maximum temperature difference per iteration cycle: 0.0001 °C
- Maximum temperature difference between cycles: 0.001 °C
- Heat flow divergence (total object): 0.001 %
- Heat flow divergence (worst node): 1 %
- Automatic recalculation of thermal values
- Default temperature difference across airspace: 10 °C

## TRISCO – Calculation Results – Façade Creations

### TRISCO Data File: 08 cen.trc

- **Number of nodes:** 1,354,328
- **Heat flow divergence (total object):** 0.000987 %
- **Heat flow divergence (worst node):** 0.104 %
- **Q:** 1.202 W
- **ti:** 20.0000 °C
- **te:** 0.0000 °C
- **A1:** 0.36 m<sup>2</sup>
- **Xmin/Xmax:** 0 / 126
- **Ymin/Ymax:** 34 / 34
- **Zmin/Zmax:** 0 / 123

### Material Temperature Range

| Col | Type     | Name                      | tmin [°C] | X  | Y  | Z  | tmax [°C] | X   | Y  | Z  |
|-----|----------|---------------------------|-----------|----|----|----|-----------|-----|----|----|
| 13  | MATERIAL | Steel                     | 18.6572   | 92 | 53 | 0  | 19.0554   | 92  | 85 | 54 |
| 42  | MATERIAL | VCL                       | 19.0225   | 80 | 85 | 0  | 19.1941   | 126 | 86 | 50 |
| 43  | MATERIAL | Breather                  | 18.5132   | 0  | 48 | 0  | 18.6509   | 83  | 49 | 76 |
| 136 | MATERIAL | reinforced_concrete_steel | 18.5198   | 0  | 49 | 0  | 18.6851   | 81  | 53 | 61 |
| 151 | MATERIAL | insulation_0.035_W/mK     | 0.4327    | 0  | 7  | 13 | 18.6440   | 83  | 48 | 63 |
| 161 | MATERIAL | Plasterboard              | 19.0508   | 81 | 86 | 0  | 19.5808   | 126 | 92 | 63 |

| Col | Type     | Name                     | tmin [°C] | X  | Y  | Z  | tmax [°C] | X   | Y  | Z   |
|-----|----------|--------------------------|-----------|----|----|----|-----------|-----|----|-----|
| 174 | BC_SIMPL | Interior                 | 19.5197   | 84 | 92 | 0  | 19.5808   | 126 | 92 | 63  |
| 185 | BC_SIMPL | highly_ventilated_cavity | 0.4327    | 0  | 7  | 13 | 0.4343    | 87  | 7  | 119 |
| 200 | EQUIMAT  | cavity_non-vent_physical | 18.5397   | 0  | 53 | 0  | 19.1752   | 126 | 85 | 55  |

### Flow Summary

| Col | Type     | Name                     | ta [°C] | Flow in [W] | Flow out [W] |
|-----|----------|--------------------------|---------|-------------|--------------|
| 174 | BC_SIMPL | interior                 | -       | 1.2018      | 0.0000       |
| 185 | BC_SIMPL | highly_ventilated_cavity | -       | 0.0000      | 1.2018       |